Nimodipine Blocks Histone-Induced Calcium Overload to Protect Neurons after Traumatic Brain Injury.

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Wei Cao, Yunfeng Xu
{"title":"Nimodipine Blocks Histone-Induced Calcium Overload to Protect Neurons after Traumatic Brain Injury.","authors":"Wei Cao, Yunfeng Xu","doi":"10.1177/15230864251376030","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Aims:</i></b> To investigate if nimodipine alleviates traumatic brain injury (TBI)-induced neuronal apoptosis and neurological deficits by inhibiting extracellular histone-mediated Ca<sup>2+</sup> influx, mitochondrial damage, and Caspase pathway activation. <b><i>Results:</i></b> In vitro, nimodipine significantly reduced histone-induced Ca<sup>2+</sup> influx in cortical neurons, reversed by Ca<sup>2+</sup> activator A23187. It restored neuronal proliferation (↑3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, ↑Ki67+ cells), reduced apoptosis (↓Annexin V/propidium iodide), improved mitochondrial function (↑ΔΨm/adenosine triphosphate, ↓reactive oxygen species/malondialdehyde, ↑Glutathione Peroxidase), and modulated apoptosis markers (↓Bax, ↑Bcl-2). These effects were blocked by A23187 or Caspase activator AD-2646, which increased Cleaved Caspase-3/9 and PARP1. Molecular docking confirmed nimodipine-histone binding. Transcriptomics revealed nimodipine reversed histone-induced dysregulation of Ca<sup>2+</sup> signaling, mitochondrial apoptosis, and oxidative stress pathways, with Caspase-3 as a key protein-protein interaction node. In vivo, nimodipine improved spatial memory (Morris maze), neurological function (↓modified neurological severity score), and motor coordination (↑rotarod) in TBI mice. It reduced brain lesions (2,3,5-triphenyltetrazolium chloride), neuronal loss (hematoxylin and eosin/Nissl), Ca<sup>2+</sup> accumulation, and proapoptotic protein expression and restored ΔΨm. Histone coadministration attenuated these benefits. <b><i>Innovation:</i></b> First demonstration that nimodipine directly targets extracellular histone-induced Ca<sup>2+</sup> influx-a key TBI pathology mechanism-preserving mitochondrial integrity and inhibiting the Caspase cascade, extending beyond its known vasodilatory effects. <b><i>Conclusion:</i></b> Nimodipine mitigates post-TBI neuronal apoptosis and dysfunction by blocking extracellular histone-driven Ca<sup>2+</sup> overload, preventing mitochondrial damage, and suppressing Caspase activation, significantly improving functional recovery. <i>Antioxid. Redox Signal.</i> 00, 000-000.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants & redox signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/15230864251376030","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: To investigate if nimodipine alleviates traumatic brain injury (TBI)-induced neuronal apoptosis and neurological deficits by inhibiting extracellular histone-mediated Ca2+ influx, mitochondrial damage, and Caspase pathway activation. Results: In vitro, nimodipine significantly reduced histone-induced Ca2+ influx in cortical neurons, reversed by Ca2+ activator A23187. It restored neuronal proliferation (↑3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, ↑Ki67+ cells), reduced apoptosis (↓Annexin V/propidium iodide), improved mitochondrial function (↑ΔΨm/adenosine triphosphate, ↓reactive oxygen species/malondialdehyde, ↑Glutathione Peroxidase), and modulated apoptosis markers (↓Bax, ↑Bcl-2). These effects were blocked by A23187 or Caspase activator AD-2646, which increased Cleaved Caspase-3/9 and PARP1. Molecular docking confirmed nimodipine-histone binding. Transcriptomics revealed nimodipine reversed histone-induced dysregulation of Ca2+ signaling, mitochondrial apoptosis, and oxidative stress pathways, with Caspase-3 as a key protein-protein interaction node. In vivo, nimodipine improved spatial memory (Morris maze), neurological function (↓modified neurological severity score), and motor coordination (↑rotarod) in TBI mice. It reduced brain lesions (2,3,5-triphenyltetrazolium chloride), neuronal loss (hematoxylin and eosin/Nissl), Ca2+ accumulation, and proapoptotic protein expression and restored ΔΨm. Histone coadministration attenuated these benefits. Innovation: First demonstration that nimodipine directly targets extracellular histone-induced Ca2+ influx-a key TBI pathology mechanism-preserving mitochondrial integrity and inhibiting the Caspase cascade, extending beyond its known vasodilatory effects. Conclusion: Nimodipine mitigates post-TBI neuronal apoptosis and dysfunction by blocking extracellular histone-driven Ca2+ overload, preventing mitochondrial damage, and suppressing Caspase activation, significantly improving functional recovery. Antioxid. Redox Signal. 00, 000-000.

尼莫地平阻断组蛋白诱导的钙超载对脑外伤后神经元的保护作用。
目的:研究尼莫地平是否通过抑制细胞外组蛋白介导的Ca2+内流、线粒体损伤和Caspase通路激活来缓解创伤性脑损伤(TBI)诱导的神经元凋亡和神经功能缺损。结果:在体外,尼莫地平显著减少组蛋白诱导的皮层神经元Ca2+内流,Ca2+激活剂A23187逆转。它恢复了神经元的增殖(↑3-(4,5-二甲基噻唑-2-基)-2,5-二苯基溴化四唑,↑Ki67+细胞),减少了细胞凋亡(↓Annexin V/碘化丙啶),改善了线粒体功能(↑ΔΨm/三磷酸腺苷,↓活性氧/丙二醛,↑谷胱甘肽过氧化物酶),并调节了细胞凋亡标志物(↓Bax,↑Bcl-2)。这些作用被A23187或Caspase激活剂AD-2646阻断,从而增加了裂解的Caspase-3/9和PARP1。分子对接证实尼莫地平与组蛋白结合。转录组学显示尼莫地平逆转组蛋白诱导的Ca2+信号失调、线粒体凋亡和氧化应激途径,其中Caspase-3是关键的蛋白相互作用节点。在体内,尼莫地平改善了TBI小鼠的空间记忆(Morris迷宫)、神经功能(↓修改神经严重程度评分)和运动协调(↑rotarod)。它减少了脑损伤(2,3,5-三苯四唑氯),神经元损失(苏木精和伊红/Nissl), Ca2+积累和促凋亡蛋白表达,并恢复ΔΨm。组蛋白联合用药减弱了这些益处。创新:首次证明尼莫地平直接靶向细胞外组蛋白诱导的Ca2+流-一个关键的TBI病理机制-保持线粒体完整性和抑制Caspase级联,扩展超出其已知的血管舒张作用。结论:尼莫地平通过阻断细胞外组蛋白驱动的Ca2+超载,防止线粒体损伤,抑制Caspase激活,显著改善脑外伤后神经元的凋亡和功能障碍,显著改善功能恢复。Antioxid。氧化还原信号:00000 - 00000。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Antioxidants & redox signaling
Antioxidants & redox signaling 生物-内分泌学与代谢
CiteScore
14.10
自引率
1.50%
发文量
170
审稿时长
3-6 weeks
期刊介绍: Antioxidants & Redox Signaling (ARS) is the leading peer-reviewed journal dedicated to understanding the vital impact of oxygen and oxidation-reduction (redox) processes on human health and disease. The Journal explores key issues in genetic, pharmaceutical, and nutritional redox-based therapeutics. Cutting-edge research focuses on structural biology, stem cells, regenerative medicine, epigenetics, imaging, clinical outcomes, and preventive and therapeutic nutrition, among other areas. ARS has expanded to create two unique foci within one journal: ARS Discoveries and ARS Therapeutics. ARS Discoveries (24 issues) publishes the highest-caliber breakthroughs in basic and applied research. ARS Therapeutics (12 issues) is the first publication of its kind that will help enhance the entire field of redox biology by showcasing the potential of redox sciences to change health outcomes. ARS coverage includes: -ROS/RNS as messengers -Gaseous signal transducers -Hypoxia and tissue oxygenation -microRNA -Prokaryotic systems -Lessons from plant biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信