Shaping robust dynamic inversion control of neural cell dynamics.

IF 1.6 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Rongting Yue, Yen-Che Hsiao, Abhishek Dutta
{"title":"Shaping robust dynamic inversion control of neural cell dynamics.","authors":"Rongting Yue, Yen-Che Hsiao, Abhishek Dutta","doi":"10.1088/2057-1976/ae07e6","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>In this work, we aim to enforce the spiking of the membrane potential of a single neuron or a neuronal network, described by dynamical models, by controlling the current injection in the presence of model uncertainty and synaptic noise.<i>Approach.</i>In this study, we propose Shaping Robust Dynamic Inversion (SRDI) as a robust nonlinear control technique, which uses dynamic inversion of neuronal dynamical systems and shapes the error surface to derive a current control signal that enforces the spiking of membrane potential under model uncertainty.<i>Main results.</i>We apply SRDI to Hodgkin-Huxley model, integrate-and-fire model, and FitzHugh-Nagumo model to achieve controlled neuron spiking. Comparative studies show that SRDI outperforms classical dynamic inversion in robustness and linear model predictive control in computational time.<i>Significance.</i>SRDI enables precise and efficient neural control by shaping error dynamics, handling nonlinearities, and maintaining robustness to noise and model uncertainty, achieving controlled timing for single spikes, spike trains, and small neuronal networks.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ae07e6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.In this work, we aim to enforce the spiking of the membrane potential of a single neuron or a neuronal network, described by dynamical models, by controlling the current injection in the presence of model uncertainty and synaptic noise.Approach.In this study, we propose Shaping Robust Dynamic Inversion (SRDI) as a robust nonlinear control technique, which uses dynamic inversion of neuronal dynamical systems and shapes the error surface to derive a current control signal that enforces the spiking of membrane potential under model uncertainty.Main results.We apply SRDI to Hodgkin-Huxley model, integrate-and-fire model, and FitzHugh-Nagumo model to achieve controlled neuron spiking. Comparative studies show that SRDI outperforms classical dynamic inversion in robustness and linear model predictive control in computational time.Significance.SRDI enables precise and efficient neural control by shaping error dynamics, handling nonlinearities, and maintaining robustness to noise and model uncertainty, achieving controlled timing for single spikes, spike trains, and small neuronal networks.

神经细胞动力学的成形鲁棒动态反演控制。
目的:在这项工作中,我们的目标是通过在存在模型不确定性和突触噪声的情况下控制电流注入,通过动态模型描述单个神经元或神经元网络的膜电位峰化。方法:在本研究中,我们提出了整形鲁棒动态反演(SRDI)作为一种鲁棒非线性控制技术,它利用神经元动态系统的动态反演和误差曲面的形状来获得电流控制信号,从而在模型不确定性下强制膜电位的尖峰。主要结果:我们将SRDI应用于Hodgkin-Huxley模型、integrated -and-fire模型和FitzHugh-Nagumo模型,实现了可控神经元尖峰。对比研究表明,SRDI在鲁棒性上优于经典动态反演,在计算时间上优于线性模型预测控制。意义:SRDI通过塑造误差动态、处理非线性、保持对噪声和模型不确定性的鲁棒性、实现对单尖峰、尖峰序列和小型神经网络的定时控制,实现精确有效的神经控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信