{"title":"Perovskite oxide exsolution process and structure regulation strategy: a review","authors":"Danyang Liu, Dan Lin, Wenwen Yu, Juntao Liu, Hexuan Zhou, Ziyu Zhou, Meixia Lan, Zhimeng Li, Jingang Qi, Lidan Tang, Bing Wang","doi":"10.1007/s11706-025-0739-7","DOIUrl":null,"url":null,"abstract":"<div><p>Traditional surface modification methods such as physical or chemical vapor deposition and impregnation have been widely used to modify perovskite surfaces. However, there is weak interaction between metal nanoparticles (NPs) loaded via these methods and the perovskite oxide support, which may lead to issues such as deactivation during application owing to poor stability, easy agglomeration, and carbon deposition. Exsolution refers to the <i>in-situ</i> growth of NPs on the surface of parent oxides. The presence of NPs increases the number of active sites for the reaction, and NPs exhibit strong interaction with the matrix, showing excellent catalytic performance and high stability. Therefore, in recent years, the field of <i>in-situ</i> exsolution has received extensive attention. Based on this, this paper starts from exsolution phenomena of perovskite oxides, reviews existing exsolution methods, sorts out structurally regulated exsolution strategies of perovskite oxides in terms of A-site defects, B-site cation dopants, and phase transformation, introduces application fields of the <i>in-situ</i> exsolution, and provides prospect.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"19 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-025-0739-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional surface modification methods such as physical or chemical vapor deposition and impregnation have been widely used to modify perovskite surfaces. However, there is weak interaction between metal nanoparticles (NPs) loaded via these methods and the perovskite oxide support, which may lead to issues such as deactivation during application owing to poor stability, easy agglomeration, and carbon deposition. Exsolution refers to the in-situ growth of NPs on the surface of parent oxides. The presence of NPs increases the number of active sites for the reaction, and NPs exhibit strong interaction with the matrix, showing excellent catalytic performance and high stability. Therefore, in recent years, the field of in-situ exsolution has received extensive attention. Based on this, this paper starts from exsolution phenomena of perovskite oxides, reviews existing exsolution methods, sorts out structurally regulated exsolution strategies of perovskite oxides in terms of A-site defects, B-site cation dopants, and phase transformation, introduces application fields of the in-situ exsolution, and provides prospect.
期刊介绍:
Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community.
The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to):
Biomaterials including biomimetics and biomineralization;
Nano materials;
Polymers and composites;
New metallic materials;
Advanced ceramics;
Materials modeling and computation;
Frontier materials synthesis and characterization;
Novel methods for materials manufacturing;
Materials performance;
Materials applications in energy, information and biotechnology.