Manufacturing methods, bonding mechanisms, and mechanical properties of titanium/steel clad plates

IF 2.3 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Qianqian Luan, Jinhua Liu, Xiangsheng Xia, Qiang Chen, Weijun He, Zejun Chen
{"title":"Manufacturing methods, bonding mechanisms, and mechanical properties of titanium/steel clad plates","authors":"Qianqian Luan,&nbsp;Jinhua Liu,&nbsp;Xiangsheng Xia,&nbsp;Qiang Chen,&nbsp;Weijun He,&nbsp;Zejun Chen","doi":"10.1007/s11706-025-0723-2","DOIUrl":null,"url":null,"abstract":"<div><p>Titanium (Ti)/steel clad plates, combining corrosion resistance of titanium with high strength of steel, are critical for applications in petroleum, aerospace, and pressure vessels. This paper comprehensively reviews four manufacturing methods: explosive bonding, roll bonding, explosive-roll bonding, and diffusion bonding detailing their advantages, limitations, and mechanisms. Explosive bonding forms a wavy interface with high strength but faces challenges in process control. Roll bonding ensures dimensional precision but suffers from weakened interfaces due to brittle intermetallic compounds (IMCs). Explosive-roll bonding balances efficiency and quality, yet risks IMCs regrowth during reheating. Diffusion bonding minimizes deformation but requires prolonged processing. Analysis of elemental diffusion and compound formation reveals that coexisting TiC and Fe–Ti IMCs degrade interfacial strength, while interlayers effectively suppress brittle phases. Experimental results highlight that rolling temperatures and interlayer selection critically influence shear strength and tensile properties. The corrugated-flat rolling (CFR) technique enhances mechanical interlocking and diffusion, achieving superior interface bonding strength. Future research should prioritize optimizing process parameters to control IMCs, developing eco-friendly methods, and revealing dynamic interface evolution to research high-performance and large-scale titanium/steel clad plates.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"19 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-025-0723-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Titanium (Ti)/steel clad plates, combining corrosion resistance of titanium with high strength of steel, are critical for applications in petroleum, aerospace, and pressure vessels. This paper comprehensively reviews four manufacturing methods: explosive bonding, roll bonding, explosive-roll bonding, and diffusion bonding detailing their advantages, limitations, and mechanisms. Explosive bonding forms a wavy interface with high strength but faces challenges in process control. Roll bonding ensures dimensional precision but suffers from weakened interfaces due to brittle intermetallic compounds (IMCs). Explosive-roll bonding balances efficiency and quality, yet risks IMCs regrowth during reheating. Diffusion bonding minimizes deformation but requires prolonged processing. Analysis of elemental diffusion and compound formation reveals that coexisting TiC and Fe–Ti IMCs degrade interfacial strength, while interlayers effectively suppress brittle phases. Experimental results highlight that rolling temperatures and interlayer selection critically influence shear strength and tensile properties. The corrugated-flat rolling (CFR) technique enhances mechanical interlocking and diffusion, achieving superior interface bonding strength. Future research should prioritize optimizing process parameters to control IMCs, developing eco-friendly methods, and revealing dynamic interface evolution to research high-performance and large-scale titanium/steel clad plates.

钛/钢复合板的制造方法、粘接机制和机械性能
钛(Ti)/钢复合板结合了钛的耐腐蚀性和高强度钢,对于石油、航空航天和压力容器的应用至关重要。本文综合评述了爆炸粘接、滚接、滚接和扩散粘接四种制造方法,详细介绍了它们的优点、局限性和机理。爆炸粘接形成波浪状界面,强度高,但工艺控制困难。滚接保证了尺寸精度,但由于易碎的金属间化合物(IMCs)而导致界面变弱。爆辊焊平衡了效率和质量,但在再加热过程中有IMCs再生的风险。扩散连接使变形最小化,但需要长时间的加工。元素扩散和化合物形成分析表明,共存的TiC和Fe-Ti IMCs降低了界面强度,而中间层有效抑制了脆性相。实验结果表明,轧制温度和层间选择对材料的抗剪强度和拉伸性能有重要影响。波纹板轧制(CFR)技术增强了机械联锁和扩散,获得了优异的界面结合强度。未来的研究应优先考虑优化工艺参数以控制IMCs,开发环保方法,揭示动态界面演变,以研究高性能和大型钛/钢复合板。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers of Materials Science
Frontiers of Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
4.20
自引率
3.70%
发文量
515
期刊介绍: Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community. The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to): Biomaterials including biomimetics and biomineralization; Nano materials; Polymers and composites; New metallic materials; Advanced ceramics; Materials modeling and computation; Frontier materials synthesis and characterization; Novel methods for materials manufacturing; Materials performance; Materials applications in energy, information and biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信