{"title":"Representation of Tensor Functions Using Lower-Order Structural Tensor Set: Two-Dimensional Point Groups","authors":"Mohammad Madadi, Lin Cheng, Pu Zhang","doi":"10.1007/s10659-025-10165-1","DOIUrl":null,"url":null,"abstract":"<div><p>The representation theory of tensor functions is essential to constitutive modeling of materials including both mechanical and physical behaviors. Generally, material symmetry is incorporated in the tensor functions through a structural or anisotropic tensor that characterizes the corresponding point group. The general mathematical framework was well-established in the 1990s. Nevertheless, the traditional theory suffers from a grand challenge that many point groups involve fourth or sixth order structural tensors that hinder its practical applications in engineering. Recently, researchers have reformulated the representation theory and opened up opportunities to model anisotropic materials using lower-order (i.e., 2nd- order and lower) structural tensors only, although the theory was not fully established. This work aims to fully establish the reformulated representation theory of tensor functions for all two-dimensional point groups. It was found that each point group needs a structural tensor set to characterize the symmetry. For each two-dimensional point group, the structural tensor set is proposed and the general tensor functions are derived. Only lower-order structural tensors are introduced so researchers can readily apply these tensor functions for their modeling applications. The theory presented here is useful for constitutive modeling of materials in general, especially for composites, nanomaterials, soft tissues, etc.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":"157 4","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-025-10165-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The representation theory of tensor functions is essential to constitutive modeling of materials including both mechanical and physical behaviors. Generally, material symmetry is incorporated in the tensor functions through a structural or anisotropic tensor that characterizes the corresponding point group. The general mathematical framework was well-established in the 1990s. Nevertheless, the traditional theory suffers from a grand challenge that many point groups involve fourth or sixth order structural tensors that hinder its practical applications in engineering. Recently, researchers have reformulated the representation theory and opened up opportunities to model anisotropic materials using lower-order (i.e., 2nd- order and lower) structural tensors only, although the theory was not fully established. This work aims to fully establish the reformulated representation theory of tensor functions for all two-dimensional point groups. It was found that each point group needs a structural tensor set to characterize the symmetry. For each two-dimensional point group, the structural tensor set is proposed and the general tensor functions are derived. Only lower-order structural tensors are introduced so researchers can readily apply these tensor functions for their modeling applications. The theory presented here is useful for constitutive modeling of materials in general, especially for composites, nanomaterials, soft tissues, etc.
期刊介绍:
The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.