{"title":"Three-Dimensional Controlled-Source Electromagnetic Modeling Using Octree-Based Spectral Element Method","authors":"Jintong Xu;Xiao Xiao;Jingtian Tang","doi":"10.1109/LGRS.2025.3606934","DOIUrl":null,"url":null,"abstract":"The controlled-source electromagnetic (CSEM) method is an important geophysical tool for sensing and studying subsurface conductivity structures. Advanced forward modeling techniques are crucial for the inversion and imaging of CSEM data. In this letter, we develop an accurate and efficient 3-D forward modeling algorithm for CSEM problems, combining spectral element method (SEM) and octree meshes. The SEM based on high-order basis functions can provide accurate CSEM responses, and the octree meshes enable local refinement, allowing for the discretization of models with fewer elements compared to the structured hexahedral meshes used in conventional SEM, while also providing the capability to handle complex models. Two synthetic examples are presented to verify the accuracy and efficiency of the algorithm. The utility of the algorithm is verified by a realistic model with complex geometry.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11153451/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The controlled-source electromagnetic (CSEM) method is an important geophysical tool for sensing and studying subsurface conductivity structures. Advanced forward modeling techniques are crucial for the inversion and imaging of CSEM data. In this letter, we develop an accurate and efficient 3-D forward modeling algorithm for CSEM problems, combining spectral element method (SEM) and octree meshes. The SEM based on high-order basis functions can provide accurate CSEM responses, and the octree meshes enable local refinement, allowing for the discretization of models with fewer elements compared to the structured hexahedral meshes used in conventional SEM, while also providing the capability to handle complex models. Two synthetic examples are presented to verify the accuracy and efficiency of the algorithm. The utility of the algorithm is verified by a realistic model with complex geometry.