Machine-Learning-Accelerated Conformal Sampling of Methanol Catalytic Conversion on Bimetallic Systems

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Giacomo Melani*, , , Thantip Roongcharoen, , , Giorgio Conter, , , Luca Sementa, , and , Alessandro Fortunelli*, 
{"title":"Machine-Learning-Accelerated Conformal Sampling of Methanol Catalytic Conversion on Bimetallic Systems","authors":"Giacomo Melani*,&nbsp;, ,&nbsp;Thantip Roongcharoen,&nbsp;, ,&nbsp;Giorgio Conter,&nbsp;, ,&nbsp;Luca Sementa,&nbsp;, and ,&nbsp;Alessandro Fortunelli*,&nbsp;","doi":"10.1021/acs.jpcc.5c00825","DOIUrl":null,"url":null,"abstract":"<p >We present an approach to accelerate the construction of reaction energy diagrams and mechanistic pathways of novel bimetallic catalytic systems by exploiting information on a known case, and we test it on the CuPd system for the catalytic decomposition of methanol. Based on machine-learning and conformal techniques for building training databases, our proposal realizes the multicomponent extension of the conformal sampling of catalytic process (CSCP) approach and maintains its same characteristic features of accuracy, efficiency, and throughput, thus in principle enabling a high-throughput screening of catalytic processes across general alloy compositions. Moreover, the so-derived CSCP reactive MLIP describes equally well the pure (Cu, Pd) and bimetallic (CuPd) catalysts, thus enabling a high-throughput screening for the given catalytic process.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 39","pages":"17472–17483"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c00825","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We present an approach to accelerate the construction of reaction energy diagrams and mechanistic pathways of novel bimetallic catalytic systems by exploiting information on a known case, and we test it on the CuPd system for the catalytic decomposition of methanol. Based on machine-learning and conformal techniques for building training databases, our proposal realizes the multicomponent extension of the conformal sampling of catalytic process (CSCP) approach and maintains its same characteristic features of accuracy, efficiency, and throughput, thus in principle enabling a high-throughput screening of catalytic processes across general alloy compositions. Moreover, the so-derived CSCP reactive MLIP describes equally well the pure (Cu, Pd) and bimetallic (CuPd) catalysts, thus enabling a high-throughput screening for the given catalytic process.

Abstract Image

Abstract Image

双金属系统甲醇催化转化的机器学习加速保形采样
我们利用已知案例的信息,提出了一种加速构建新型双金属催化体系反应能图和机理路径的方法,并在cud体系上进行了甲醇催化分解的测试。基于机器学习和共形技术构建训练数据库,我们的建议实现了催化过程共形采样(CSCP)方法的多组分扩展,并保持了其相同的准确性、效率和吞吐量特征,因此原则上可以实现跨一般合金成分的催化过程的高通量筛选。此外,由此衍生的CSCP反应性MLIP同样可以很好地描述纯(Cu, Pd)和双金属(CuPd)催化剂,从而可以对给定的催化过程进行高通量筛选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信