{"title":"Longitudinal antibody titers measured after COVID-19 mRNA vaccination can identify individuals at risk for subsequent infection","authors":"Hyeongki Park, Naotoshi Nakamura, Sho Miyamoto, Yoshitaka Sato, Kwang Su Kim, Kosaku Kitagawa, Yurie Kobashi, Yuta Tani, Yuzo Shimazu, Tianchen Zhao, Yoshitaka Nishikawa, Fumiya Omata, Moe Kawashima, Toshiki Abe, Yoshika Saito, Saori Nonaka, Morihito Takita, Chika Yamamoto, Hiroshi Morioka, Katsuhiro Kato, Ken Sagou, Tetsuya Yagi, Takeshi Kawamura, Akira Sugiyama, Aya Nakayama, Yudai Kaneko, Risa Yokokawa Shibata, Kazuyuki Aihara, Tatsuhiko Kodama, Akifumi Kamiyama, Tomokazu Tamura, Takasuke Fukuhara, Kenji Shibuya, Tadaki Suzuki, Shingo Iwami, Masaharu Tsubokura","doi":"10.1126/scitranslmed.adv4214","DOIUrl":null,"url":null,"abstract":"<div >A key issue in the post–COVID-19 pandemic era is the ongoing administration of COVID-19 vaccines. Repeated vaccination is essential for preparing against currently circulating and newly emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. However, optimizing vaccination strategies is crucial to efficiently manage medical resources and establish an effective vaccination framework. Therefore, a strategy to identify poor responders with lower sustained antibody titers would be beneficial because these individuals should be considered high priority for revaccination. We investigated longitudinal antibody titer data in a cohort of 2526 people in Fukushima, Japan, collected between April 2021 and November 2022. Using mathematical modeling and machine learning, we stratified the time-course patterns of antibody titers after two primary doses and one booster dose of COVID-19 messenger RNA vaccines. We identified three populations, which we refer to as the durable, the vulnerable, and the rapid-decliner populations, and approximately half of the participants remained in the same population after the booster dose. The rapid-decliner population experienced earlier infections than the others. Furthermore, when comparing spike protein–specific immunoglobulin G (IgG) titers, spike protein–specific IgA titers, and SARS-CoV-2–specific T cell responses between participants who experienced subsequent infections after booster vaccination and those who did not, we found that spike protein–specific IgA titers were lower during the early stage after booster vaccination in participants who went on to become infected with SARS-CoV-2. This approach could be used to inform policy decisions on vaccine distribution to maximize population-level immunity both in future pandemics and in the post–COVID-19 pandemic era.</div>","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"17 816","pages":""},"PeriodicalIF":14.6000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/scitranslmed.adv4214","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.science.org/doi/10.1126/scitranslmed.adv4214","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A key issue in the post–COVID-19 pandemic era is the ongoing administration of COVID-19 vaccines. Repeated vaccination is essential for preparing against currently circulating and newly emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. However, optimizing vaccination strategies is crucial to efficiently manage medical resources and establish an effective vaccination framework. Therefore, a strategy to identify poor responders with lower sustained antibody titers would be beneficial because these individuals should be considered high priority for revaccination. We investigated longitudinal antibody titer data in a cohort of 2526 people in Fukushima, Japan, collected between April 2021 and November 2022. Using mathematical modeling and machine learning, we stratified the time-course patterns of antibody titers after two primary doses and one booster dose of COVID-19 messenger RNA vaccines. We identified three populations, which we refer to as the durable, the vulnerable, and the rapid-decliner populations, and approximately half of the participants remained in the same population after the booster dose. The rapid-decliner population experienced earlier infections than the others. Furthermore, when comparing spike protein–specific immunoglobulin G (IgG) titers, spike protein–specific IgA titers, and SARS-CoV-2–specific T cell responses between participants who experienced subsequent infections after booster vaccination and those who did not, we found that spike protein–specific IgA titers were lower during the early stage after booster vaccination in participants who went on to become infected with SARS-CoV-2. This approach could be used to inform policy decisions on vaccine distribution to maximize population-level immunity both in future pandemics and in the post–COVID-19 pandemic era.
期刊介绍:
Science Translational Medicine is an online journal that focuses on publishing research at the intersection of science, engineering, and medicine. The goal of the journal is to promote human health by providing a platform for researchers from various disciplines to communicate their latest advancements in biomedical, translational, and clinical research.
The journal aims to address the slow translation of scientific knowledge into effective treatments and health measures. It publishes articles that fill the knowledge gaps between preclinical research and medical applications, with a focus on accelerating the translation of knowledge into new ways of preventing, diagnosing, and treating human diseases.
The scope of Science Translational Medicine includes various areas such as cardiovascular disease, immunology/vaccines, metabolism/diabetes/obesity, neuroscience/neurology/psychiatry, cancer, infectious diseases, policy, behavior, bioengineering, chemical genomics/drug discovery, imaging, applied physical sciences, medical nanotechnology, drug delivery, biomarkers, gene therapy/regenerative medicine, toxicology and pharmacokinetics, data mining, cell culture, animal and human studies, medical informatics, and other interdisciplinary approaches to medicine.
The target audience of the journal includes researchers and management in academia, government, and the biotechnology and pharmaceutical industries. It is also relevant to physician scientists, regulators, policy makers, investors, business developers, and funding agencies.