Allosteric Activation of Cas12a via PAM Topological Engineering for Direct and Rapid Detection of Nucleases.

IF 16.9
Xiu-Li Tao, Yan-Mei Lei, Xue-Mei Zhou, Zhao-Peng Chen, Yue Ma, Pin-Yi Ma, Da-Qian Song, Ying Zhuo
{"title":"Allosteric Activation of Cas12a via PAM Topological Engineering for Direct and Rapid Detection of Nucleases.","authors":"Xiu-Li Tao, Yan-Mei Lei, Xue-Mei Zhou, Zhao-Peng Chen, Yue Ma, Pin-Yi Ma, Da-Qian Song, Ying Zhuo","doi":"10.1002/anie.202515521","DOIUrl":null,"url":null,"abstract":"<p><p>A contemporary question in the intensely active field of CRISPR-Cas12a-based molecular diagnostics is how to simplify the multistep conversion process for detecting nonnucleic acid targets. Herein we describe an allosteric Y-shaped DNA structure for Cas12a activation via protospacer-adjacent motif (PAM) topological engineering (Y-COPE) to achieve straightforward and diverse nuclease monitoring. The newly designed topological structure of the Y-COPE is characterized by a split PAM embedded at the three-way junction and protospacers flanking both sides. This unique spatial configuration of the PAM effectively prevents Cas12a activation. Upon target cleavage, the released truncated fragments can dynamically correct the PAM, which promptly restores the dsDNA conformation for Cas12a activation and accomplishes signal output. Theoretical calculation results revealed that, compared with the canonical dsDNA activator, in the Y-COPE, there was a 1.8 Å increase in the center distance between Lys595 of Cas12a and the PAM, which led to a 24.2 kcal mol<sup>-1</sup> increase in binding free energy. This clearly revealed the underlying inhibition mechanism of the topological configuration of the PAM for Cas12a activation. This study advances the understanding of the dynamic response of Cas12a to topological PAM conformations and introduces the universal concept of CRISPR-based nonnucleic acid detection to benefit the next-generation molecular diagnostics.</p>","PeriodicalId":520556,"journal":{"name":"Angewandte Chemie (International ed. in English)","volume":" ","pages":"e202515521"},"PeriodicalIF":16.9000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie (International ed. in English)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/anie.202515521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A contemporary question in the intensely active field of CRISPR-Cas12a-based molecular diagnostics is how to simplify the multistep conversion process for detecting nonnucleic acid targets. Herein we describe an allosteric Y-shaped DNA structure for Cas12a activation via protospacer-adjacent motif (PAM) topological engineering (Y-COPE) to achieve straightforward and diverse nuclease monitoring. The newly designed topological structure of the Y-COPE is characterized by a split PAM embedded at the three-way junction and protospacers flanking both sides. This unique spatial configuration of the PAM effectively prevents Cas12a activation. Upon target cleavage, the released truncated fragments can dynamically correct the PAM, which promptly restores the dsDNA conformation for Cas12a activation and accomplishes signal output. Theoretical calculation results revealed that, compared with the canonical dsDNA activator, in the Y-COPE, there was a 1.8 Å increase in the center distance between Lys595 of Cas12a and the PAM, which led to a 24.2 kcal mol-1 increase in binding free energy. This clearly revealed the underlying inhibition mechanism of the topological configuration of the PAM for Cas12a activation. This study advances the understanding of the dynamic response of Cas12a to topological PAM conformations and introduces the universal concept of CRISPR-based nonnucleic acid detection to benefit the next-generation molecular diagnostics.

Abstract Image

基于PAM拓扑工程的Cas12a变构活化用于核酸酶的直接和快速检测。
在基于crispr - cas12的分子诊断领域,一个非常活跃的当代问题是如何简化检测非核酸靶标的多步转化过程。在这里,我们描述了一个变构的y形DNA结构,通过原间隔-邻近基序(PAM)拓扑工程(Y-COPE)来激活Cas12a,以实现简单和多样化的核酸酶监测。新设计的Y-COPE拓扑结构的特点是在三向连接处嵌入一个分裂的PAM和两侧的原间隔器。PAM的这种独特的空间结构有效地阻止了Cas12a的激活。靶切割后,释放的截短片段可以动态校正PAM,迅速恢复Cas12a激活所需的dsDNA构象,完成信号输出。理论计算结果表明,与典型的dsDNA激活剂相比,在Y-COPE中,Cas12a的Lys595与PAM之间的中心距离增加了1.8 Å,导致结合自由能增加24.2 kcal mol-1。这清楚地揭示了PAM拓扑结构对Cas12a激活的潜在抑制机制。本研究促进了对Cas12a对拓扑PAM构象的动态响应的理解,并引入了基于crispr的非核酸检测的普遍概念,从而有利于下一代分子诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信