Gradient Polarization Induces Three-Dimensional Asymmetric Electron Distribution in Covalent Organic Frameworks for Dramatically Enhanced Photocatalytic Overall Nitrogen Fixation.

IF 16.9
Yunxia Liu, Xiaoxu Deng, Zihe Wang, Shuang-Feng Yin, Peng Chen
{"title":"Gradient Polarization Induces Three-Dimensional Asymmetric Electron Distribution in Covalent Organic Frameworks for Dramatically Enhanced Photocatalytic Overall Nitrogen Fixation.","authors":"Yunxia Liu, Xiaoxu Deng, Zihe Wang, Shuang-Feng Yin, Peng Chen","doi":"10.1002/anie.202516117","DOIUrl":null,"url":null,"abstract":"<p><p>Constructing a donor-acceptor (D-A)-based covalent organic frameworks (COFs) is an effective approach to enhance photocatalytic efficiency, yet the spatial conformation imposes inherent trade-offs between in-plane and interplane carrier transport. Here, we present a spatial gradient polarization strategy that combines distinct electronegativities of (NH)<sub>2</sub>─C═S and C═O groups in COFs to establish a 3D asymmetric electron distribution and the gradient polarization. Mechanistic studies have shown that the gradient polarization triggers the interlayer dipole rearrangement in a nonpolar orientation, thereby constructing a cooperative in-plane and out-of-plane polarization field. This polarization field decouples the constraints on carrier transport and drives rapid charge transfer in an anisotropic manner, breaking the traditional perception of D-A intramolecular polarization within the plane. Moreover, the resulting polarized microenvironment activates N≡N bonds, optimizes hydrogen-bond networks, and stabilizes reaction intermediates, enabling the sequential conversion pathway of nitrogen. Ultimately, the covalent organic framework containing (NH)<sub>2</sub>─C═S and C═O groups (SBO) exhibited excellent photocatalytic performance with yields of NH<sub>4</sub> <sup>+</sup> and NO<sub>3</sub> <sup>-</sup> of 11.59 and 7.18 mg g<sup>-1</sup> h<sup>-1</sup>, surpassing all reported systems. Additionally, under natural sunlight, SBO also achieves unprecedented NH<sub>4</sub> <sup>+</sup> (87.17 mg m<sup>-2</sup> h<sup>-1</sup>) and NO<sub>3</sub> <sup>-</sup> (73.63 mg m<sup>-2</sup> h<sup>-1</sup>) yields. Our research not only offers a strategic blueprint for modulating the 3D polarization in COFs but also bridges the gap in the relationship between the molecular structure of materials and the spatial carrier migration.</p>","PeriodicalId":520556,"journal":{"name":"Angewandte Chemie (International ed. in English)","volume":" ","pages":"e202516117"},"PeriodicalIF":16.9000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie (International ed. in English)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/anie.202516117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Constructing a donor-acceptor (D-A)-based covalent organic frameworks (COFs) is an effective approach to enhance photocatalytic efficiency, yet the spatial conformation imposes inherent trade-offs between in-plane and interplane carrier transport. Here, we present a spatial gradient polarization strategy that combines distinct electronegativities of (NH)2─C═S and C═O groups in COFs to establish a 3D asymmetric electron distribution and the gradient polarization. Mechanistic studies have shown that the gradient polarization triggers the interlayer dipole rearrangement in a nonpolar orientation, thereby constructing a cooperative in-plane and out-of-plane polarization field. This polarization field decouples the constraints on carrier transport and drives rapid charge transfer in an anisotropic manner, breaking the traditional perception of D-A intramolecular polarization within the plane. Moreover, the resulting polarized microenvironment activates N≡N bonds, optimizes hydrogen-bond networks, and stabilizes reaction intermediates, enabling the sequential conversion pathway of nitrogen. Ultimately, the covalent organic framework containing (NH)2─C═S and C═O groups (SBO) exhibited excellent photocatalytic performance with yields of NH4 + and NO3 - of 11.59 and 7.18 mg g-1 h-1, surpassing all reported systems. Additionally, under natural sunlight, SBO also achieves unprecedented NH4 + (87.17 mg m-2 h-1) and NO3 - (73.63 mg m-2 h-1) yields. Our research not only offers a strategic blueprint for modulating the 3D polarization in COFs but also bridges the gap in the relationship between the molecular structure of materials and the spatial carrier migration.

梯度极化诱导共价有机框架中三维不对称电子分布,显著增强光催化全氮固定。
构建基于供体-受体(D-A)的共价有机框架(COFs)是提高光催化效率的有效方法,但空间构象在面内和面间载流子传输之间存在固有的权衡。在这里,我们提出了一种空间梯度极化策略,该策略结合了COFs中(NH)2─C = S和C = O基团的不同电负性,以建立三维不对称电子分布和梯度极化。机理研究表明,梯度极化触发了非极性取向的层间偶极重排,从而构建了面内面外协同极化场。该极化场解耦了载流子输运的约束,并以各向异性的方式驱动快速电荷转移,打破了平面内分子内D-A极化的传统观念。此外,由此产生的极化微环境激活N≡N键,优化氢键网络,稳定反应中间体,使氮的顺序转化途径成为可能。最终,含有(NH)2─C = S和C = O基团的共价有机骨架(SBO)表现出优异的光催化性能,NH4 +和NO3 -的产率分别为11.59和7.18 mg g-1 h-1,超过了所有报道的体系。此外,在自然光照下,SBO还获得了前所未有的NH4 + (87.17 mg m-2 h-1)和NO3 - (73.63 mg m-2 h-1)产量。我们的研究不仅为调节COFs的三维极化提供了战略蓝图,而且还弥补了材料分子结构与空间载流子迁移之间关系的空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信