Explainable cluster-based learning for prediction of postprandial glycemic events and insulin dose optimization in type 1 diabetes.

IF 7.7
PLOS digital health Pub Date : 2025-09-16 eCollection Date: 2025-09-01 DOI:10.1371/journal.pdig.0000996
Najib Ur Rehman, Ivan Contreras, Aleix Beneyto, Josep Vehi
{"title":"Explainable cluster-based learning for prediction of postprandial glycemic events and insulin dose optimization in type 1 diabetes.","authors":"Najib Ur Rehman, Ivan Contreras, Aleix Beneyto, Josep Vehi","doi":"10.1371/journal.pdig.0000996","DOIUrl":null,"url":null,"abstract":"<p><p>Effective management of postprandial glycemic excursions in type 1 diabetes requires accurate prediction of adverse events and personalized insulin adjustments informed by interpretable models. This study presents an explainable dual-prediction framework that simultaneously forecasts postprandial hypoglycemia and hyperglycemia within a 4-hour window using cluster-personalized ensemble models. Glycemic profiles were identified through a hybrid unsupervised approach combining self-organizing maps and k-means clustering, enabling the training of specialized random forest classifiers. The system outperformed baseline models on both real-world and simulated datasets, achieving high performance (AUC = 0.84 and 0.93; MCC = 0.47 and 0.73 for hypo- and hyperglycemia, respectively). Model interpretability was addressed using global (SHAP) and local (LIME) explanations, while interaction analysis revealed the non-linear effects of carbohydrate intake and insulin bolus combinations. An insulin adjustment module further refined pre-meal bolus recommendations based on predicted risk. Simulated evaluations confirmed improved postprandial time-in-range and reduced hypoglycemia without excessive hyperglycemia. These results underscore the potential of profile-driven and explainable machine learning approaches to support safer, individualized diabetes care.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"4 9","pages":"e0000996"},"PeriodicalIF":7.7000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12440209/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pdig.0000996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Effective management of postprandial glycemic excursions in type 1 diabetes requires accurate prediction of adverse events and personalized insulin adjustments informed by interpretable models. This study presents an explainable dual-prediction framework that simultaneously forecasts postprandial hypoglycemia and hyperglycemia within a 4-hour window using cluster-personalized ensemble models. Glycemic profiles were identified through a hybrid unsupervised approach combining self-organizing maps and k-means clustering, enabling the training of specialized random forest classifiers. The system outperformed baseline models on both real-world and simulated datasets, achieving high performance (AUC = 0.84 and 0.93; MCC = 0.47 and 0.73 for hypo- and hyperglycemia, respectively). Model interpretability was addressed using global (SHAP) and local (LIME) explanations, while interaction analysis revealed the non-linear effects of carbohydrate intake and insulin bolus combinations. An insulin adjustment module further refined pre-meal bolus recommendations based on predicted risk. Simulated evaluations confirmed improved postprandial time-in-range and reduced hypoglycemia without excessive hyperglycemia. These results underscore the potential of profile-driven and explainable machine learning approaches to support safer, individualized diabetes care.

可解释的基于聚类的学习预测1型糖尿病餐后血糖事件和胰岛素剂量优化。
1型糖尿病餐后血糖升高的有效管理需要准确预测不良事件,并根据可解释的模型进行个性化胰岛素调整。本研究提出了一个可解释的双重预测框架,该框架使用聚类个性化集成模型在4小时内同时预测餐后低血糖和高血糖。通过结合自组织图和k-means聚类的混合无监督方法识别血糖谱,从而能够训练专门的随机森林分类器。该系统在真实世界和模拟数据集上都优于基线模型,实现了高性能(低血糖和高血糖的AUC分别为0.84和0.93;MCC分别为0.47和0.73)。使用全局(SHAP)和局部(LIME)解释来解决模型的可解释性,而相互作用分析揭示了碳水化合物摄入量和胰岛素剂量组合的非线性影响。胰岛素调节模块根据预测的风险进一步完善餐前丸建议。模拟评估证实改善餐后时间范围和降低低血糖,没有过度高血糖。这些结果强调了概况驱动和可解释的机器学习方法在支持更安全、个性化的糖尿病护理方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信