Syeda Sumayya Tariq, Urooj Qureshi, Mamona Mushtaq, Sajida Munsif, Mohammad Nur-E-Alam, Mohammed F Hawwal, Yan Wang, Zaheer Ul-Haq
{"title":"In Silico Characterization of Bromo-DragonFLY Binding to the 5-HT<sub>2A</sub> Receptor: Molecular Insights Into a Potent Designer Psychedelic.","authors":"Syeda Sumayya Tariq, Urooj Qureshi, Mamona Mushtaq, Sajida Munsif, Mohammad Nur-E-Alam, Mohammed F Hawwal, Yan Wang, Zaheer Ul-Haq","doi":"10.1002/prot.70055","DOIUrl":null,"url":null,"abstract":"<p><p>Bromo-DragonFLY (BDF), a potent designer psychedelic drug with hallucinogenic properties, has recently emerged as a significant recreational substance. Named for its dragonfly-like molecular structure, BDF induces prolonged psychedelic effects, with hallucinations lasting several days. Clinical reports highlight severe toxicity, including confusion, tachycardia, hypertension, seizures, renal failure, and, in extreme cases, death. BDF acts as a potent agonist of the 5-HT2A serotonin receptor subtype, which mediates the behavioral and psychedelic effects of hallucinogens. Despite its increasing prevalence and associated clinical implications, the precise molecular mechanisms underlying BDF's interaction with 5-HT2A remain inadequately characterized, particularly from an in silico perspective. This study addresses this gap by employing a comprehensive in silico framework to investigate the molecular interactions of BDF with the 5-HT<sub>2A</sub> receptor. Molecular docking was used to identify binding sites, while all-atom molecular dynamics (MD) simulations provided insights into the stability of the protein-ligand complex, assessing deviations, local flexibility, and time-dependent gyration patterns. The results revealed stable and compact complex formation between BDF and 5-HT<sub>2A</sub>, characterized by minimal per-residue fluctuations and high hydrogen bond occupancy, suggesting a highly stable interaction as shown experimentally. Additionally, principal component analysis, leveraging machine learning algorithms, demonstrated consistent motion, while free energy profiles highlighted stable energy basins with minimal variations for the BDF-5-HT<sub>2A</sub> complex. These findings suggest strong binding affinities of BDF with the serotonin receptor, leading to highly stable complex formation. This study provides a foundational understanding of BDF's molecular interactions, offering critical insights into its role as a potent psychedelic agent and laying the groundwork for future investigations into the risks posed by novel designer drugs.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.70055","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bromo-DragonFLY (BDF), a potent designer psychedelic drug with hallucinogenic properties, has recently emerged as a significant recreational substance. Named for its dragonfly-like molecular structure, BDF induces prolonged psychedelic effects, with hallucinations lasting several days. Clinical reports highlight severe toxicity, including confusion, tachycardia, hypertension, seizures, renal failure, and, in extreme cases, death. BDF acts as a potent agonist of the 5-HT2A serotonin receptor subtype, which mediates the behavioral and psychedelic effects of hallucinogens. Despite its increasing prevalence and associated clinical implications, the precise molecular mechanisms underlying BDF's interaction with 5-HT2A remain inadequately characterized, particularly from an in silico perspective. This study addresses this gap by employing a comprehensive in silico framework to investigate the molecular interactions of BDF with the 5-HT2A receptor. Molecular docking was used to identify binding sites, while all-atom molecular dynamics (MD) simulations provided insights into the stability of the protein-ligand complex, assessing deviations, local flexibility, and time-dependent gyration patterns. The results revealed stable and compact complex formation between BDF and 5-HT2A, characterized by minimal per-residue fluctuations and high hydrogen bond occupancy, suggesting a highly stable interaction as shown experimentally. Additionally, principal component analysis, leveraging machine learning algorithms, demonstrated consistent motion, while free energy profiles highlighted stable energy basins with minimal variations for the BDF-5-HT2A complex. These findings suggest strong binding affinities of BDF with the serotonin receptor, leading to highly stable complex formation. This study provides a foundational understanding of BDF's molecular interactions, offering critical insights into its role as a potent psychedelic agent and laying the groundwork for future investigations into the risks posed by novel designer drugs.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.