Artificial intelligence in urban science: why does it matter?

IF 3.3 Q1 GEOGRAPHY
Annals of GIS Pub Date : 2025-06-01 Epub Date: 2025-02-17 DOI:10.1080/19475683.2025.2469110
Xinyue Ye, Tan Yigitcanlar, Michael Goodchild, Xiao Huang, Wenwen Li, Shih-Lung Shaw, Yanjie Fu, Wenjing Gong, Galen Newman
{"title":"Artificial intelligence in urban science: why does it matter?","authors":"Xinyue Ye, Tan Yigitcanlar, Michael Goodchild, Xiao Huang, Wenwen Li, Shih-Lung Shaw, Yanjie Fu, Wenjing Gong, Galen Newman","doi":"10.1080/19475683.2025.2469110","DOIUrl":null,"url":null,"abstract":"<p><p>Urban science aims to explain, discover, understand, and generalize (EDUG) complex, human-centric systems, emphasizing societal context and sustainability. However, integrating artificial intelligence (AI) into urban science presents challenges, including data availability, ethical considerations, and the 'black-box' nature of many AI models. Despite these limitations, AI offers significant opportunities for urban management and planning by leveraging vast, multimodal datasets to optimize infrastructure, predict trends, and enhance resilience. Techniques such as explainable AI and knowledge-driven approaches have begun addressing transparency concerns, aligning AI outputs with urban science's emphasis on interpretability. Urban science reciprocally contributes to AI development by embedding contextual awareness and human-centric insights, enhancing AI's ability to navigate urban complexities. Examples include digital twins for real-time urban analysis and generative AI for inclusive urban modelling. This opinion piece advocates for fostering a symbiotic relationship between AI and urban science, emphasizing co-learning and ethical collaboration. By integrating technical innovation with societal needs, the convergence of AI and urban science - termed the 'New Urban Science' - promises smarter, equitable, and sustainable cities. This paradigm underscores the transformative potential of aligning AI advancements with urban science's foundational goals.</p>","PeriodicalId":46270,"journal":{"name":"Annals of GIS","volume":"31 2","pages":"181-189"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12435530/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of GIS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19475683.2025.2469110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

Urban science aims to explain, discover, understand, and generalize (EDUG) complex, human-centric systems, emphasizing societal context and sustainability. However, integrating artificial intelligence (AI) into urban science presents challenges, including data availability, ethical considerations, and the 'black-box' nature of many AI models. Despite these limitations, AI offers significant opportunities for urban management and planning by leveraging vast, multimodal datasets to optimize infrastructure, predict trends, and enhance resilience. Techniques such as explainable AI and knowledge-driven approaches have begun addressing transparency concerns, aligning AI outputs with urban science's emphasis on interpretability. Urban science reciprocally contributes to AI development by embedding contextual awareness and human-centric insights, enhancing AI's ability to navigate urban complexities. Examples include digital twins for real-time urban analysis and generative AI for inclusive urban modelling. This opinion piece advocates for fostering a symbiotic relationship between AI and urban science, emphasizing co-learning and ethical collaboration. By integrating technical innovation with societal needs, the convergence of AI and urban science - termed the 'New Urban Science' - promises smarter, equitable, and sustainable cities. This paradigm underscores the transformative potential of aligning AI advancements with urban science's foundational goals.

城市科学中的人工智能:为什么重要?
城市科学旨在解释、发现、理解和概括(EDUG)复杂的、以人为中心的系统,强调社会背景和可持续性。然而,将人工智能(AI)整合到城市科学中存在挑战,包括数据可用性、伦理考虑以及许多人工智能模型的“黑箱”性质。尽管存在这些限制,但人工智能通过利用庞大的多模式数据集来优化基础设施、预测趋势和增强韧性,为城市管理和规划提供了重要机会。可解释的人工智能和知识驱动的方法等技术已经开始解决透明度问题,使人工智能产出与城市科学对可解释性的强调保持一致。城市科学通过嵌入上下文意识和以人为中心的见解,增强人工智能应对城市复杂性的能力,从而为人工智能的发展做出贡献。例子包括用于实时城市分析的数字孪生和用于包容性城市建模的生成式人工智能。这篇评论文章提倡人工智能和城市科学之间的共生关系,强调共同学习和伦理合作。通过将技术创新与社会需求相结合,人工智能和城市科学的融合——被称为“新城市科学”——有望实现更智能、公平和可持续的城市。这种模式强调了将人工智能进步与城市科学的基本目标结合起来的变革潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of GIS
Annals of GIS Multiple-
CiteScore
8.30
自引率
2.00%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信