{"title":"Anticancer Effect of the Triphenylphosphonium-Conjugated Quinolone Antibiotics Targeting Mitochondrial DNA Replication.","authors":"Yuming Qiao, Yuki Kida, Xiaoyi Lai, Nobuko Koshikawa, Rie Igarashi, Atsushi Takatori, Keizo Takenaga","doi":"10.1111/cas.70199","DOIUrl":null,"url":null,"abstract":"<p><p>Antibacterial quinolones are widely used to treat bacterial infections in humans. They inhibit bacterial DNA gyrase and topoisomerase IV, whose analogous enzymes are present in mammalian mitochondria. Quinolones inhibit mitochondrial topoisomerases, thereby leading to mitochondrial DNA (mtDNA) replication suppression and cancer cell death. Meanwhile, high concentrations of quinolones are required to induce cancer cell death, possibly owing to poor delivery to the mitochondria. In this study, we synthesized nalidixic acid (NA) and ciprofloxacin (CFX) conjugated with the mitochondria-targeting moiety triphenylphosphonium (TPP), NX-TPP and CFX-TPP, to enhance mitochondrial delivery and examined their anticancer efficacy. NX-TPP and CFX-TPP markedly reduced the antibacterial activity, although CFX-TPP was more active than NX-TPP. However, both NX-TPP and CFX-TPP significantly induced cell death in colon HT-29, pancreatic MIAPaCa-2, and other cancer cells but not in non-cancerous cells including normal dermal fibroblasts and human vascular endothelial cells at a comparative level. NX-TPP induced necrosis-like cell death characterized by cell membrane ballooning and rupture. Mechanistically, NX-TPP was efficiently incorporated into the mitochondria, leading to increased mitochondrial reaction oxygen species (mtROS) generation and mitophagy, and decreased mtDNA copy number and mitochondrial respiration. NX-TPP inhibited tumor growth in HT-29 and MIAPaCa-2 xenograft mouse models without any apparent adverse effects. These results suggest that mtDNA replication-targeting quinolone derivatives, termed MitoQNs, that exhibit reduced antibacterial activity, thereby decreasing antibiotic resistance induction, and enhanced anticancer efficacy, are candidate drugs for cancer therapy.</p>","PeriodicalId":48943,"journal":{"name":"Cancer Science","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/cas.70199","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Antibacterial quinolones are widely used to treat bacterial infections in humans. They inhibit bacterial DNA gyrase and topoisomerase IV, whose analogous enzymes are present in mammalian mitochondria. Quinolones inhibit mitochondrial topoisomerases, thereby leading to mitochondrial DNA (mtDNA) replication suppression and cancer cell death. Meanwhile, high concentrations of quinolones are required to induce cancer cell death, possibly owing to poor delivery to the mitochondria. In this study, we synthesized nalidixic acid (NA) and ciprofloxacin (CFX) conjugated with the mitochondria-targeting moiety triphenylphosphonium (TPP), NX-TPP and CFX-TPP, to enhance mitochondrial delivery and examined their anticancer efficacy. NX-TPP and CFX-TPP markedly reduced the antibacterial activity, although CFX-TPP was more active than NX-TPP. However, both NX-TPP and CFX-TPP significantly induced cell death in colon HT-29, pancreatic MIAPaCa-2, and other cancer cells but not in non-cancerous cells including normal dermal fibroblasts and human vascular endothelial cells at a comparative level. NX-TPP induced necrosis-like cell death characterized by cell membrane ballooning and rupture. Mechanistically, NX-TPP was efficiently incorporated into the mitochondria, leading to increased mitochondrial reaction oxygen species (mtROS) generation and mitophagy, and decreased mtDNA copy number and mitochondrial respiration. NX-TPP inhibited tumor growth in HT-29 and MIAPaCa-2 xenograft mouse models without any apparent adverse effects. These results suggest that mtDNA replication-targeting quinolone derivatives, termed MitoQNs, that exhibit reduced antibacterial activity, thereby decreasing antibiotic resistance induction, and enhanced anticancer efficacy, are candidate drugs for cancer therapy.
期刊介绍:
Cancer Science (formerly Japanese Journal of Cancer Research) is a monthly publication of the Japanese Cancer Association. First published in 1907, the Journal continues to publish original articles, editorials, and letters to the editor, describing original research in the fields of basic, translational and clinical cancer research. The Journal also accepts reports and case reports.
Cancer Science aims to present highly significant and timely findings that have a significant clinical impact on oncologists or that may alter the disease concept of a tumor. The Journal will not publish case reports that describe a rare tumor or condition without new findings to be added to previous reports; combination of different tumors without new suggestive findings for oncological research; remarkable effect of already known treatments without suggestive data to explain the exceptional result. Review articles may also be published.