Development of a nitric oxide-releasing cephalexin-based hybrid compound for enhanced antimicrobial efficacy and biofilm disruption.

IF 3.6 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sumit Kumar, Myddelton C Parker, Yi Wu, Anastasia Marx, Hitesh Handa, Elizabeth J Brisbois
{"title":"Development of a nitric oxide-releasing cephalexin-based hybrid compound for enhanced antimicrobial efficacy and biofilm disruption.","authors":"Sumit Kumar, Myddelton C Parker, Yi Wu, Anastasia Marx, Hitesh Handa, Elizabeth J Brisbois","doi":"10.1039/d5md00602c","DOIUrl":null,"url":null,"abstract":"<p><p>Biofilm formation on medical devices and the rise of antibiotic resistance have undermined conventional antibiotics such as cephalexin (CEX), which is effective against Gram-positive infections but has limited activity against Gram-negative pathogens and biofilms. To overcome these limitations, we developed a hybrid nitric oxide (NO)-releasing conjugate (SNAP_CEX) by covalently attaching the NO donor <i>S</i>-nitroso-<i>N</i>-acetylpenicillamine (SNAP) to CEX. SNAP_CEX exhibited a sustained NO release profile over 30 days, indicating enhanced stability compared to SNAP's rapid degradation, even though the Griess assay showed NO release from SNAP over 30 days. The hybrid maintained strong antibacterial activity against <i>Staphylococcus aureus</i> (<i>S. aureus</i>; MIC<sub>50</sub> = 7 μM <i>vs.</i> 2.5 μM for CEX) and dramatically improved efficacy against <i>Pseudomonas aeruginosa</i> (<i>P. aeruginosa</i>; MIC<sub>50</sub> = 3 mM <i>vs.</i> 16 mM for CEX). SNAP_CEX also significantly disrupted established biofilms, reducing <i>S. aureus</i> biofilm biomass by ∼75% (<i>vs.</i> ∼33% by CEX) and viable cells by ∼99%, and achieving ∼67% biomass reduction and 77% killing in <i>P. aeruginosa</i> biofilms (<i>vs.</i> ∼25% and 18% by CEX). These effects demonstrate that SNAP_CEX combines NO's biofilm-disruptive action with antibiotic therapy to combat biofilm-associated resistant infections, while remaining cytocompatible at therapeutic concentrations.</p>","PeriodicalId":21462,"journal":{"name":"RSC medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12435586/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1039/d5md00602c","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Biofilm formation on medical devices and the rise of antibiotic resistance have undermined conventional antibiotics such as cephalexin (CEX), which is effective against Gram-positive infections but has limited activity against Gram-negative pathogens and biofilms. To overcome these limitations, we developed a hybrid nitric oxide (NO)-releasing conjugate (SNAP_CEX) by covalently attaching the NO donor S-nitroso-N-acetylpenicillamine (SNAP) to CEX. SNAP_CEX exhibited a sustained NO release profile over 30 days, indicating enhanced stability compared to SNAP's rapid degradation, even though the Griess assay showed NO release from SNAP over 30 days. The hybrid maintained strong antibacterial activity against Staphylococcus aureus (S. aureus; MIC50 = 7 μM vs. 2.5 μM for CEX) and dramatically improved efficacy against Pseudomonas aeruginosa (P. aeruginosa; MIC50 = 3 mM vs. 16 mM for CEX). SNAP_CEX also significantly disrupted established biofilms, reducing S. aureus biofilm biomass by ∼75% (vs. ∼33% by CEX) and viable cells by ∼99%, and achieving ∼67% biomass reduction and 77% killing in P. aeruginosa biofilms (vs. ∼25% and 18% by CEX). These effects demonstrate that SNAP_CEX combines NO's biofilm-disruptive action with antibiotic therapy to combat biofilm-associated resistant infections, while remaining cytocompatible at therapeutic concentrations.

一种基于头孢氨苄的一氧化氮释放化合物的开发,用于增强抗菌功效和破坏生物膜。
医疗器械上生物膜的形成和抗生素耐药性的上升已经破坏了头孢氨苄(CEX)等传统抗生素,后者对革兰氏阳性感染有效,但对革兰氏阴性病原体和生物膜的活性有限。为了克服这些限制,我们通过将NO供体s -亚硝基-n -乙酰青霉胺(SNAP)共价连接到CEX上,开发了一种杂化一氧化氮(NO)释放偶联物(SNAP_CEX)。尽管Griess实验显示SNAP在30天内释放NO,但SNAP_CEX表现出持续30天的NO释放特征,表明与SNAP的快速降解相比,SNAP_CEX的稳定性增强。该杂种对金黄色葡萄球菌(金黄色葡萄球菌,MIC50 = 7 μM, CEX为2.5 μM)具有较强的抑菌活性,对铜绿假单胞菌(铜绿假单胞菌,CEX MIC50 = 3 mM, CEX为16 mM)的抑菌效果显著提高。SNAP_CEX还显著破坏了已建立的生物膜,使金黄色葡萄球菌生物膜的生物量减少了~ 75% (CEX为~ 33%),活细胞减少了~ 99%,铜绿假单胞菌生物膜的生物量减少了~ 67%,杀死了77% (CEX为~ 25%和18%)。这些效应表明SNAP_CEX将NO的生物膜破坏作用与抗生素治疗结合起来,以对抗生物膜相关的耐药感染,同时在治疗浓度下保持细胞相容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
2.40%
发文量
129
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信