{"title":"PLK1-mediated PDHA1 phosphorylation drives metabolic reprogramming in lung cancer.","authors":"Jia Peng, Qiongsi Zhang, Xiongjian Rao, Derek B Allison, Yifan Kong, Ruixin Wang, Jinghui Liu, Yanquan Zhang, Wendy Katz, Zhiguo Li, Xiaoqi Liu","doi":"10.1038/s41388-025-03571-1","DOIUrl":null,"url":null,"abstract":"<p><p>Although the involvement of polo-like kinase 1 (PLK1) in metabolic reprogramming from oxidative phosphorylation (OXPHOS) to glycolysis has been previously described, the underlying molecular mechanism remains unclear. Pyruvate dehydrogenase (PDH) catalyzes the conversion of pyruvate into acetyl-CoA, the starting material for the tricarboxylic acid (TCA) cycle. In a companion study by Zhang et al., we demonstrated that PLK1 phosphorylation of PDHA1 at threonine 57 (PDHA1-T57) drives its protein degradation via mitophagy activation. Using a stable-isotope resolved metabolomics (SIRM) approach, we now show that PLK1 phosphorylation of PDHA1-T57 results in metabolic reprogramming from OXPHOS to glycolysis. Notably, cells mimicking PDHA1-T57 phosphorylation rely more on the aspartate-malate shuttle than on glucose-derived pyruvate to sustain the TCA cycle. This metabolic shift was also observed in mouse embryonic fibroblasts (MEFs) and transgenic mice conditionally expressing the PDHA1-T57D variant, highlighting the role of PLK1 in metabolic reprogramming in vivo. It is well-established that pyruvate dehydrogenase kinase (PDK)-mediated phosphorylation of PDH leads to its inactivation and that dichloroacetic acid (DCA), a PDK inhibitor, has been investigated in preclinical and early clinical studies as a potential therapeutic agent for lung cancer. We demonstrated that DCA combined with Onvansertib, a PLK1 inhibitor, synergistically inhibits lung tumor growth by enhancing mitochondrial ROS, inhibiting glycolysis, and inducing apoptosis. This study aims to elucidate how PLK1-associated activity drives the metabolic reprogramming from OXPHOS to glycolysis during cellular transformation, thereby contributing to lung carcinogenesis. Our results provide support for a clinical trial to evaluate the efficacy of Onvansertib plus DCA in treating lung cancer.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":" ","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12503065/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41388-025-03571-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Although the involvement of polo-like kinase 1 (PLK1) in metabolic reprogramming from oxidative phosphorylation (OXPHOS) to glycolysis has been previously described, the underlying molecular mechanism remains unclear. Pyruvate dehydrogenase (PDH) catalyzes the conversion of pyruvate into acetyl-CoA, the starting material for the tricarboxylic acid (TCA) cycle. In a companion study by Zhang et al., we demonstrated that PLK1 phosphorylation of PDHA1 at threonine 57 (PDHA1-T57) drives its protein degradation via mitophagy activation. Using a stable-isotope resolved metabolomics (SIRM) approach, we now show that PLK1 phosphorylation of PDHA1-T57 results in metabolic reprogramming from OXPHOS to glycolysis. Notably, cells mimicking PDHA1-T57 phosphorylation rely more on the aspartate-malate shuttle than on glucose-derived pyruvate to sustain the TCA cycle. This metabolic shift was also observed in mouse embryonic fibroblasts (MEFs) and transgenic mice conditionally expressing the PDHA1-T57D variant, highlighting the role of PLK1 in metabolic reprogramming in vivo. It is well-established that pyruvate dehydrogenase kinase (PDK)-mediated phosphorylation of PDH leads to its inactivation and that dichloroacetic acid (DCA), a PDK inhibitor, has been investigated in preclinical and early clinical studies as a potential therapeutic agent for lung cancer. We demonstrated that DCA combined with Onvansertib, a PLK1 inhibitor, synergistically inhibits lung tumor growth by enhancing mitochondrial ROS, inhibiting glycolysis, and inducing apoptosis. This study aims to elucidate how PLK1-associated activity drives the metabolic reprogramming from OXPHOS to glycolysis during cellular transformation, thereby contributing to lung carcinogenesis. Our results provide support for a clinical trial to evaluate the efficacy of Onvansertib plus DCA in treating lung cancer.
期刊介绍:
Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge.
Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.