Viro3D: a comprehensive database of virus protein structure predictions.

IF 7.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ulad Litvin, Spyros Lytras, Alexander Jack, David L Robertson, Joseph Hughes, Joe Grove
{"title":"Viro3D: a comprehensive database of virus protein structure predictions.","authors":"Ulad Litvin, Spyros Lytras, Alexander Jack, David L Robertson, Joseph Hughes, Joe Grove","doi":"10.1038/s44320-025-00147-9","DOIUrl":null,"url":null,"abstract":"<p><p>Viruses are genetic parasites of cellular life. Tolerance to genetic change, high mutation rates, adaptations to hosts, and immune escape have driven extensive sequence divergence of viral genes, hampering phylogenetic inference and functional annotation. Protein structure, however, is more conserved, allowing searches for distant homologs and revealing otherwise obscured evolutionary histories. Viruses are underrepresented in current protein structure databases, but this can be addressed by recent advances in machine learning. Using AlphaFold2-ColabFold and ESMFold, we predicted structures for >85,000 proteins from >4400 viruses, expanding viral coverage 30 times compared to experimental structures. Using this data, we map form and function across the human and animal virosphere and examine the evolutionary history of viral class-I fusion glycoproteins, revealing the potential origins of coronavirus spike glycoprotein. Our database, Viro3D ( https://viro3d.cvr.gla.ac.uk/ ), will allow the virology community to fully benefit from the structure prediction revolution, facilitating fundamental molecular virology and structure-informed design of therapies and vaccines.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44320-025-00147-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Viruses are genetic parasites of cellular life. Tolerance to genetic change, high mutation rates, adaptations to hosts, and immune escape have driven extensive sequence divergence of viral genes, hampering phylogenetic inference and functional annotation. Protein structure, however, is more conserved, allowing searches for distant homologs and revealing otherwise obscured evolutionary histories. Viruses are underrepresented in current protein structure databases, but this can be addressed by recent advances in machine learning. Using AlphaFold2-ColabFold and ESMFold, we predicted structures for >85,000 proteins from >4400 viruses, expanding viral coverage 30 times compared to experimental structures. Using this data, we map form and function across the human and animal virosphere and examine the evolutionary history of viral class-I fusion glycoproteins, revealing the potential origins of coronavirus spike glycoprotein. Our database, Viro3D ( https://viro3d.cvr.gla.ac.uk/ ), will allow the virology community to fully benefit from the structure prediction revolution, facilitating fundamental molecular virology and structure-informed design of therapies and vaccines.

Viro3D:病毒蛋白质结构预测的综合数据库。
病毒是细胞生命的遗传寄生虫。对遗传变化的耐受性、高突变率、对宿主的适应性和免疫逃逸导致病毒基因的广泛序列分化,阻碍了系统发育推断和功能注释。然而,蛋白质结构更为保守,允许搜索遥远的同源物并揭示其他模糊的进化历史。病毒在当前的蛋白质结构数据库中代表性不足,但这可以通过机器学习的最新进展来解决。利用AlphaFold2-ColabFold和ESMFold,我们预测了>4400病毒中>85,000个蛋白质的结构,与实验结构相比,病毒覆盖范围扩大了30倍。利用这些数据,我们绘制了人类和动物病毒圈的形态和功能图,并研究了病毒i类融合糖蛋白的进化史,揭示了冠状病毒刺突糖蛋白的潜在起源。我们的数据库Viro3D (https://viro3d.cvr.gla.ac.uk/)将使病毒学社区充分受益于结构预测革命,促进基础分子病毒学和结构信息的治疗和疫苗设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Systems Biology
Molecular Systems Biology 生物-生化与分子生物学
CiteScore
18.50
自引率
1.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Systems biology is a field that aims to understand complex biological systems by studying their components and how they interact. It is an integrative discipline that seeks to explain the properties and behavior of these systems. Molecular Systems Biology is a scholarly journal that publishes top-notch research in the areas of systems biology, synthetic biology, and systems medicine. It is an open access journal, meaning that its content is freely available to readers, and it is peer-reviewed to ensure the quality of the published work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信