Histone Acetyltransferases Gcn5 and Esa1 Regulate Occupancy of RSC to Maintain Nucleosome-Depleted Regions and Promote RSC Recruitment to Coding Regions Genome-Wide in Saccharomyces cerevisiae.

IF 2.7 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Emily Biernat, Mansi Verma, Matthew Werick, Uzair Khan, Sama Joseph, Chhabi K Govind
{"title":"Histone Acetyltransferases Gcn5 and Esa1 Regulate Occupancy of RSC to Maintain Nucleosome-Depleted Regions and Promote RSC Recruitment to Coding Regions Genome-Wide in <i>Saccharomyces cerevisiae</i>.","authors":"Emily Biernat, Mansi Verma, Matthew Werick, Uzair Khan, Sama Joseph, Chhabi K Govind","doi":"10.1080/10985549.2025.2555901","DOIUrl":null,"url":null,"abstract":"<p><p>Chromatin remodelers are important for maintaining chromatin structure and regulating gene expression. In this study, we investigated the roles of histone acetyltransferases (HATs) Gcn5 and Esa1 in regulating RSC and histone occupancy on chromatin, as well as their impact on transcription across the genome. Our findings reveal distinct effects of HATs on RSC occupancy in promoters and ORFs. The lack of HATs leads to the accumulation of RSC, and it was greater in nucleosome-depleted regions (NDRs) containing fragile nucleosomes (FNs), relative to other NDRs. The increased RSC NDR-binding was greater in Esa1-deficient cells than in those lacking Gcn5. The increased RSC binding was not seen in cells lacking the H3 or H4 tails. The mutants also led to significant increases in histone occupancies around the NDRs genome-wide. Overall, the data suggest that hypoacetylated tails may recruit RSC to NDRs, especially to FN-containing NDRs, and that subsequent histone acetylation enhances histone eviction. The HAT mutants also exhibited reduced recruitment of TBP and Pol II. In contrast to the promoters, RSC occupancies were significantly reduced in transcribed ORFs in the HAT mutants. Thus, our data implicate HATs and RSC in maintaining NDRs, regulating chromatin structure, and promoting transcription.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":" ","pages":"1-23"},"PeriodicalIF":2.7000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10985549.2025.2555901","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chromatin remodelers are important for maintaining chromatin structure and regulating gene expression. In this study, we investigated the roles of histone acetyltransferases (HATs) Gcn5 and Esa1 in regulating RSC and histone occupancy on chromatin, as well as their impact on transcription across the genome. Our findings reveal distinct effects of HATs on RSC occupancy in promoters and ORFs. The lack of HATs leads to the accumulation of RSC, and it was greater in nucleosome-depleted regions (NDRs) containing fragile nucleosomes (FNs), relative to other NDRs. The increased RSC NDR-binding was greater in Esa1-deficient cells than in those lacking Gcn5. The increased RSC binding was not seen in cells lacking the H3 or H4 tails. The mutants also led to significant increases in histone occupancies around the NDRs genome-wide. Overall, the data suggest that hypoacetylated tails may recruit RSC to NDRs, especially to FN-containing NDRs, and that subsequent histone acetylation enhances histone eviction. The HAT mutants also exhibited reduced recruitment of TBP and Pol II. In contrast to the promoters, RSC occupancies were significantly reduced in transcribed ORFs in the HAT mutants. Thus, our data implicate HATs and RSC in maintaining NDRs, regulating chromatin structure, and promoting transcription.

在酿酒酵母中,组蛋白乙酰转移酶Gcn5和Esa1调节RSC的占用以维持核小体缺失区域,并促进RSC向全基因组编码区域的招募。
染色质重塑子对于维持染色质结构和调节基因表达具有重要意义。在这项研究中,我们研究了组蛋白乙酰转移酶(HATs) Gcn5和Esa1在调节RSC和组蛋白在染色质上的占用中的作用,以及它们对整个基因组转录的影响。我们的研究结果揭示了hat对启动子和orf中RSC占用的明显影响。HATs的缺乏导致RSC的积累,并且相对于其他ndr,在含有脆弱核小体(FNs)的核小体耗尽区(ndr)中RSC的积累更多。与缺乏Gcn5的细胞相比,esa1缺陷细胞中RSC ndr结合的增加更大。在缺乏H3或H4尾部的细胞中没有观察到RSC结合的增加。突变体还导致ndr全基因组组蛋白占用率显著增加。总的来说,数据表明,低乙酰化的尾部可能会将RSC招募到ndr中,尤其是含有fn的ndr,而随后的组蛋白乙酰化会增强组蛋白的排出。HAT突变体也表现出TBP和Pol II的募集减少。与启动子相反,HAT突变体转录orf中的RSC占位显著降低。因此,我们的数据表明,hat和RSC在维持ndr、调节染色质结构和促进转录方面具有重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular and Cellular Biology
Molecular and Cellular Biology 生物-生化与分子生物学
CiteScore
9.80
自引率
1.90%
发文量
120
审稿时长
1 months
期刊介绍: Molecular and Cellular Biology (MCB) showcases significant discoveries in cellular morphology and function, genome organization, regulation of genetic expression, morphogenesis, and somatic cell genetics. The journal also examines viral systems, publishing papers that emphasize their impact on the cell.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信