Physiological and metabolic responses of Zymomonas mobilis to lignocellulosic hydrolysate.

IF 3.8 2区 生物学 Q2 MICROBIOLOGY
Julio Rivera Vazquez, Edna Trujillo, Zach Wenger, Michael Botts, Joshua J Coon, Daniel Amador-Noguez
{"title":"Physiological and metabolic responses of <i>Zymomonas mobilis</i> to lignocellulosic hydrolysate.","authors":"Julio Rivera Vazquez, Edna Trujillo, Zach Wenger, Michael Botts, Joshua J Coon, Daniel Amador-Noguez","doi":"10.1128/spectrum.00610-25","DOIUrl":null,"url":null,"abstract":"<p><p><i>Zymomonas mobilis</i> is a promising biocatalyst for the sustainable conversion of lignocellulosic sugars into biofuels and bioproducts, yet its response to lignocellulosic hydrolysates remains poorly understood. Here, we investigate the physiological response of <i>Z. mobilis</i> to ammonia fiber expansion (AFEX)-pretreated switchgrass hydrolysate using a systems-level approach integrating LC-MS/MS-based lipidomics and shotgun proteomics. Growth on hydrolysate induced substantial shifts in fatty acid and membrane phospholipid composition, alongside broad proteomic remodeling. Notably, <i>Z. mobilis</i> exhibited a stress response characterized by the upregulation of heat shock proteins and efflux transporters and the downregulation of cell motility proteins. Unexpectedly, hydrolysate exposure also led to a robust upregulation of the Entner-Doudoroff pathway, the ethanol fermentation pathway, and other central carbon metabolism enzymes, indicating a substantial cellular investment potentially driven by additional nutrient availability in hydrolysate. These findings provide new insights into the metabolic adaptations of <i>Z. mobilis</i> to lignocellulosic hydrolysates, informing strategies to enhance its biofuel production capabilities.IMPORTANCEBiomass pretreatment processes release fermentable sugars from lignocellulosic biomass, but they also generate inhibitors that can impact microbial metabolism. This study provides a systems-level evaluation of how <i>Zymomonas mobilis</i> responds to hydrolysate stress, revealing distinct physiological and lipid membrane remodeling responses. While some stress responses overlap with those induced by ethanol and isobutanol toxicity, both valuable biofuels, hydrolysate exposure elicits unique metabolic shifts. These findings offer valuable insights for engineering <i>Z. mobilis</i> strains with improved tolerance and performance for efficient bioconversion of lignocellulosic hydrolysates into biofuels and bioproducts.</p>","PeriodicalId":18670,"journal":{"name":"Microbiology spectrum","volume":" ","pages":"e0061025"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology spectrum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/spectrum.00610-25","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Zymomonas mobilis is a promising biocatalyst for the sustainable conversion of lignocellulosic sugars into biofuels and bioproducts, yet its response to lignocellulosic hydrolysates remains poorly understood. Here, we investigate the physiological response of Z. mobilis to ammonia fiber expansion (AFEX)-pretreated switchgrass hydrolysate using a systems-level approach integrating LC-MS/MS-based lipidomics and shotgun proteomics. Growth on hydrolysate induced substantial shifts in fatty acid and membrane phospholipid composition, alongside broad proteomic remodeling. Notably, Z. mobilis exhibited a stress response characterized by the upregulation of heat shock proteins and efflux transporters and the downregulation of cell motility proteins. Unexpectedly, hydrolysate exposure also led to a robust upregulation of the Entner-Doudoroff pathway, the ethanol fermentation pathway, and other central carbon metabolism enzymes, indicating a substantial cellular investment potentially driven by additional nutrient availability in hydrolysate. These findings provide new insights into the metabolic adaptations of Z. mobilis to lignocellulosic hydrolysates, informing strategies to enhance its biofuel production capabilities.IMPORTANCEBiomass pretreatment processes release fermentable sugars from lignocellulosic biomass, but they also generate inhibitors that can impact microbial metabolism. This study provides a systems-level evaluation of how Zymomonas mobilis responds to hydrolysate stress, revealing distinct physiological and lipid membrane remodeling responses. While some stress responses overlap with those induced by ethanol and isobutanol toxicity, both valuable biofuels, hydrolysate exposure elicits unique metabolic shifts. These findings offer valuable insights for engineering Z. mobilis strains with improved tolerance and performance for efficient bioconversion of lignocellulosic hydrolysates into biofuels and bioproducts.

活动单胞菌对木质纤维素水解物的生理和代谢反应。
活动单胞菌是一种很有前途的生物催化剂,可将木质纤维素糖可持续转化为生物燃料和生物产品,但其对木质纤维素水解物的反应尚不清楚。本文采用LC-MS/MS-based脂质组学和shotgun蛋白质组学相结合的系统级方法,研究了Z. mobilis对氨纤维膨胀(AFEX)预处理柳枝稷水解产物的生理反应。水解产物的生长引起脂肪酸和膜磷脂组成的实质性变化,以及广泛的蛋白质组重塑。值得注意的是,Z. mobilis表现出一种以热休克蛋白和外排转运蛋白上调和细胞运动蛋白下调为特征的应激反应。出乎意料的是,水解液暴露还导致enner - doudoroff途径、乙醇发酵途径和其他中心碳代谢酶的强烈上调,表明水解液中额外的营养可用性可能驱动了大量的细胞投资。这些发现为Z. mobilis对木质纤维素水解物的代谢适应性提供了新的见解,为提高其生物燃料生产能力提供了策略。生物质预处理过程从木质纤维素生物质中释放可发酵糖,但它们也会产生影响微生物代谢的抑制剂。这项研究提供了一个系统水平的评估如何移动单胞菌对水解应激的反应,揭示了不同的生理和脂质膜重塑反应。虽然一些应激反应与乙醇和异丁醇毒性(两者都是有价值的生物燃料)引起的应激反应重叠,但水解液暴露会引起独特的代谢变化。这些发现为工程Z. mobilis菌株提供了有价值的见解,这些菌株具有更好的耐受性和性能,可以将木质纤维素水解物有效地转化为生物燃料和生物产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbiology spectrum
Microbiology spectrum Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.20
自引率
5.40%
发文量
1800
期刊介绍: Microbiology Spectrum publishes commissioned review articles on topics in microbiology representing ten content areas: Archaea; Food Microbiology; Bacterial Genetics, Cell Biology, and Physiology; Clinical Microbiology; Environmental Microbiology and Ecology; Eukaryotic Microbes; Genomics, Computational, and Synthetic Microbiology; Immunology; Pathogenesis; and Virology. Reviews are interrelated, with each review linking to other related content. A large board of Microbiology Spectrum editors aids in the development of topics for potential reviews and in the identification of an editor, or editors, who shepherd each collection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信