Zev Karve, Jacob Calpey, Christopher Machado, Michelle Knecht, Maria Carmenza Mejia
{"title":"New Doc on the Block: Scoping Review of AI Systems Delivering Motivational Interviewing for Health Behavior Change.","authors":"Zev Karve, Jacob Calpey, Christopher Machado, Michelle Knecht, Maria Carmenza Mejia","doi":"10.2196/78417","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Artificial intelligence (AI) is increasingly used in digital health, particularly through large language models (LLMs), to support patient engagement and behavior change. One novel application is the delivery of motivational interviewing (MI), an evidence-based, patient-centered counseling technique designed to enhance motivation and resolve ambivalence around health behaviors. AI tools, including chatbots, mobile apps, and web-based agents, are being developed to simulate MI techniques at scale. While these innovations are promising, important questions remain about how faithfully AI systems can replicate MI principles or achieve meaningful behavioral impact.</p><p><strong>Objective: </strong>This scoping review aimed to summarize existing empirical studies evaluating AI-driven systems that apply MI techniques to support health behavior change. Specifically, we examined the feasibility of these systems; their fidelity to MI principles; and their reported behavioral, psychological, or engagement outcomes.</p><p><strong>Methods: </strong>We systematically searched PubMed, Embase, Scopus, Web of Science, and Cochrane Library for empirical studies published between January 1, 2018, and February 25, 2025. Eligible studies involved AI-driven systems using natural language generation, understanding, or computational logic to deliver MI techniques to users targeting a specific health behavior. We excluded studies using AI solely for training clinicians in MI. Three independent reviewers screened and extracted data on study design, AI modality and type, MI components, health behavior focus, MI fidelity assessment, and outcome domains.</p><p><strong>Results: </strong>Of the 1001 records identified, 15 (1.5%) met the inclusion criteria. Of these 15 studies, 6 (40%) were exploratory feasibility or pilot studies, and 3 (20%) were randomized controlled trials. AI modalities included rule-based chatbots (9/15, 60%), LLM-based systems (4/15, 27%), and virtual or mobile agents (2/15, 13%). Targeted behaviors included smoking cessation (6/15, 40%), substance use (3/15, 20%), COVID-19 vaccine hesitancy, type 2 diabetes self-management, stress, mental health service use, and opioid use during pregnancy. Of the 15 studies, 13 (87%) reported positive findings on feasibility or user acceptability, while 6 (40%) assessed MI fidelity using expert review or structured coding, with moderate to high alignment reported. Several studies found that users perceived the AI systems as judgment free, supportive, and easier to engage with than human counselors, particularly in stigmatized contexts. However, limitations in empathy, safety transparency, and emotional nuance were commonly noted. Only 3 (20%) of the 15 studies reported substantially significant behavioral changes.</p><p><strong>Conclusions: </strong>AI systems delivering MI show promise for enhancing patient engagement and scaling behavior change interventions. Early evidence supports their usability and partial fidelity to MI principles, especially in sensitive domains. However, most systems remain in early development, and few have been rigorously tested. Future research should prioritize randomized evaluations; standardized fidelity measures; and safeguards for LLM safety, empathy, and accuracy in health-related dialogue.</p><p><strong>Trial registration: </strong>OSF Registries 10.17605/OSF.IO/G9N7E; https://osf.io/g9n7e.</p>","PeriodicalId":16337,"journal":{"name":"Journal of Medical Internet Research","volume":"27 ","pages":"e78417"},"PeriodicalIF":6.0000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12485255/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Internet Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/78417","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Artificial intelligence (AI) is increasingly used in digital health, particularly through large language models (LLMs), to support patient engagement and behavior change. One novel application is the delivery of motivational interviewing (MI), an evidence-based, patient-centered counseling technique designed to enhance motivation and resolve ambivalence around health behaviors. AI tools, including chatbots, mobile apps, and web-based agents, are being developed to simulate MI techniques at scale. While these innovations are promising, important questions remain about how faithfully AI systems can replicate MI principles or achieve meaningful behavioral impact.
Objective: This scoping review aimed to summarize existing empirical studies evaluating AI-driven systems that apply MI techniques to support health behavior change. Specifically, we examined the feasibility of these systems; their fidelity to MI principles; and their reported behavioral, psychological, or engagement outcomes.
Methods: We systematically searched PubMed, Embase, Scopus, Web of Science, and Cochrane Library for empirical studies published between January 1, 2018, and February 25, 2025. Eligible studies involved AI-driven systems using natural language generation, understanding, or computational logic to deliver MI techniques to users targeting a specific health behavior. We excluded studies using AI solely for training clinicians in MI. Three independent reviewers screened and extracted data on study design, AI modality and type, MI components, health behavior focus, MI fidelity assessment, and outcome domains.
Results: Of the 1001 records identified, 15 (1.5%) met the inclusion criteria. Of these 15 studies, 6 (40%) were exploratory feasibility or pilot studies, and 3 (20%) were randomized controlled trials. AI modalities included rule-based chatbots (9/15, 60%), LLM-based systems (4/15, 27%), and virtual or mobile agents (2/15, 13%). Targeted behaviors included smoking cessation (6/15, 40%), substance use (3/15, 20%), COVID-19 vaccine hesitancy, type 2 diabetes self-management, stress, mental health service use, and opioid use during pregnancy. Of the 15 studies, 13 (87%) reported positive findings on feasibility or user acceptability, while 6 (40%) assessed MI fidelity using expert review or structured coding, with moderate to high alignment reported. Several studies found that users perceived the AI systems as judgment free, supportive, and easier to engage with than human counselors, particularly in stigmatized contexts. However, limitations in empathy, safety transparency, and emotional nuance were commonly noted. Only 3 (20%) of the 15 studies reported substantially significant behavioral changes.
Conclusions: AI systems delivering MI show promise for enhancing patient engagement and scaling behavior change interventions. Early evidence supports their usability and partial fidelity to MI principles, especially in sensitive domains. However, most systems remain in early development, and few have been rigorously tested. Future research should prioritize randomized evaluations; standardized fidelity measures; and safeguards for LLM safety, empathy, and accuracy in health-related dialogue.
期刊介绍:
The Journal of Medical Internet Research (JMIR) is a highly respected publication in the field of health informatics and health services. With a founding date in 1999, JMIR has been a pioneer in the field for over two decades.
As a leader in the industry, the journal focuses on digital health, data science, health informatics, and emerging technologies for health, medicine, and biomedical research. It is recognized as a top publication in these disciplines, ranking in the first quartile (Q1) by Impact Factor.
Notably, JMIR holds the prestigious position of being ranked #1 on Google Scholar within the "Medical Informatics" discipline.