Min Kyung Pyo, Jun Hwi Ko, Do Su Lim, Hyeon Ji Gwon, A M Abd El-Aty, Hacı Ahmet Aydemir, Ji Hoon Jeong, Tae Woo Jung
{"title":"Dapagliflozin attenuates lipotoxic tenocyte injury via PPARα activation and irisin-driven antioxidant pathways.","authors":"Min Kyung Pyo, Jun Hwi Ko, Do Su Lim, Hyeon Ji Gwon, A M Abd El-Aty, Hacı Ahmet Aydemir, Ji Hoon Jeong, Tae Woo Jung","doi":"10.1080/03008207.2025.2561655","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Dapagliflozin (DAP), an SGLT2 inhibitor commonly prescribed for type 2 diabetes, has been recognized for its anti-inflammatory and antioxidative effects in various disease contexts. However, its impact on hyperlipidemic tenocytes-particularly within the framework of obesity-induced tendinopathy-remains underexplored. This study investigated the protective role of DAP in palmitate-exposed tenocytes, which simulate lipid-induced tendon degeneration.</p><p><strong>Methods: </strong>Protein expression was analyzed via Western blotting, while apoptosis was assessed through cell viability assays, caspase-3 activity, and TUNEL staining. Oxidative stress was evaluated through the quantification of H₂O₂, malondialdehyde (MDA), and reactive oxygen species (ROS). PPARα gene silencing was conducted via siRNA transfection.</p><p><strong>Results: </strong>DAP treatment significantly attenuated apoptosis and oxidative stress, restored the extracellular matrix (ECM) balance, and enhanced tenocyte migration. These protective effects were associated with the upregulation of PPARα, PGC1α, and Nrf2, along with increased activities of antioxidant enzymes such as superoxide dismutase (SOD) and catalase. Notably, silencing PPARα negated the beneficial effects of DAP, underscoring its central role. Furthermore, irisin-a myokine upregulated by DAP in myocytes-was also found to reduce oxidative stress and apoptosis in palmitate-treated tenocytes.</p><p><strong>Conclusion: </strong>This study provides novel insights into the mechanistic actions of DAP in musculoskeletal repair and highlights its potential in mitigating the cellular consequences of metabolic stress. By advancing therapeutic strategies rooted in metabolic regulation and cellular resilience, these findings support the development of safer, more effective interventions for chronic degenerative conditions associated with obesity.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"1-13"},"PeriodicalIF":2.1000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connective Tissue Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03008207.2025.2561655","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Dapagliflozin (DAP), an SGLT2 inhibitor commonly prescribed for type 2 diabetes, has been recognized for its anti-inflammatory and antioxidative effects in various disease contexts. However, its impact on hyperlipidemic tenocytes-particularly within the framework of obesity-induced tendinopathy-remains underexplored. This study investigated the protective role of DAP in palmitate-exposed tenocytes, which simulate lipid-induced tendon degeneration.
Methods: Protein expression was analyzed via Western blotting, while apoptosis was assessed through cell viability assays, caspase-3 activity, and TUNEL staining. Oxidative stress was evaluated through the quantification of H₂O₂, malondialdehyde (MDA), and reactive oxygen species (ROS). PPARα gene silencing was conducted via siRNA transfection.
Results: DAP treatment significantly attenuated apoptosis and oxidative stress, restored the extracellular matrix (ECM) balance, and enhanced tenocyte migration. These protective effects were associated with the upregulation of PPARα, PGC1α, and Nrf2, along with increased activities of antioxidant enzymes such as superoxide dismutase (SOD) and catalase. Notably, silencing PPARα negated the beneficial effects of DAP, underscoring its central role. Furthermore, irisin-a myokine upregulated by DAP in myocytes-was also found to reduce oxidative stress and apoptosis in palmitate-treated tenocytes.
Conclusion: This study provides novel insights into the mechanistic actions of DAP in musculoskeletal repair and highlights its potential in mitigating the cellular consequences of metabolic stress. By advancing therapeutic strategies rooted in metabolic regulation and cellular resilience, these findings support the development of safer, more effective interventions for chronic degenerative conditions associated with obesity.
期刊介绍:
The aim of Connective Tissue Research is to present original and significant research in all basic areas of connective tissue and matrix biology.
The journal also provides topical reviews and, on occasion, the proceedings of conferences in areas of special interest at which original work is presented.
The journal supports an interdisciplinary approach; we present a variety of perspectives from different disciplines, including
Biochemistry
Cell and Molecular Biology
Immunology
Structural Biology
Biophysics
Biomechanics
Regenerative Medicine
The interests of the Editorial Board are to understand, mechanistically, the structure-function relationships in connective tissue extracellular matrix, and its associated cells, through interpretation of sophisticated experimentation using state-of-the-art technologies that include molecular genetics, imaging, immunology, biomechanics and tissue engineering.