Udit Sheth, Rebecca Harrison, Kyle Ferber, Erin G Rosenbaugh, Amanda Bevis, Rohini Khillan, Michael Benatar, Nicole L Bjorklund, Elena Di Daniel, Glenn A Harris, Olga I Kahn, Yongge Liu, Henrik Zetterberg, Laura L Mitic, Danielle Graham, Tania F Gendron
{"title":"Measuring neurofilament light in human plasma and cerebrospinal fluid: a comparison of five analytical immunoassays.","authors":"Udit Sheth, Rebecca Harrison, Kyle Ferber, Erin G Rosenbaugh, Amanda Bevis, Rohini Khillan, Michael Benatar, Nicole L Bjorklund, Elena Di Daniel, Glenn A Harris, Olga I Kahn, Yongge Liu, Henrik Zetterberg, Laura L Mitic, Danielle Graham, Tania F Gendron","doi":"10.1515/cclm-2025-0610","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Neurofilament light (NfL) is an established biofluid marker of neuroaxonal injury for neurological diseases. Several high-throughput and sensitive immunoassays have been developed to quantify NfL in blood and cerebrospinal fluid (CSF), facilitating the use of NfL as a biomarker in research and clinical practice. However, because of the lack of rigorous comparisons of assays, it has been difficult to determine whether data are comparable and whether assay performance differs. Here, we compared the performance of five NfL immunoassays.</p><p><strong>Methods: </strong>To assess the five NfL immunoassays (Fujirebio, ProteinSimple, Quanterix, Roche and Siemens), we used pooled plasma or pooled CSF, as well as unique samples from 20 healthy controls and 20 individuals with El Escorial defined probable or definite amyotrophic lateral sclerosis (ALS), to evaluate precision, parallelism and/or bias. We also examined correlations between plasma and CSF NfL concentrations within and across assays and evaluated their ability to differentiate healthy controls from individuals with ALS.</p><p><strong>Results: </strong>Four of the five assays demonstrated exemplary performance based on our analyses of precision and parallelism. Across the five assays, NfL concentrations were lower in plasma than in CSF, although they displayed a high degree of correlation. We noted bias across assays; plasma NfL concentrations were lowest for the Roche assay and highest for the ProteinSimple assay. In addition, all assays reliably distinguished healthy controls from individuals with ALS using plasma or CSF NfL.</p><p><strong>Conclusions: </strong>Four NfL assays demonstrated similar analytic performance. Alongside performance, other factors such as costs, accessibility, usability, footprint, and intended use, should be considered.</p>","PeriodicalId":10390,"journal":{"name":"Clinical chemistry and laboratory medicine","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical chemistry and laboratory medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/cclm-2025-0610","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Neurofilament light (NfL) is an established biofluid marker of neuroaxonal injury for neurological diseases. Several high-throughput and sensitive immunoassays have been developed to quantify NfL in blood and cerebrospinal fluid (CSF), facilitating the use of NfL as a biomarker in research and clinical practice. However, because of the lack of rigorous comparisons of assays, it has been difficult to determine whether data are comparable and whether assay performance differs. Here, we compared the performance of five NfL immunoassays.
Methods: To assess the five NfL immunoassays (Fujirebio, ProteinSimple, Quanterix, Roche and Siemens), we used pooled plasma or pooled CSF, as well as unique samples from 20 healthy controls and 20 individuals with El Escorial defined probable or definite amyotrophic lateral sclerosis (ALS), to evaluate precision, parallelism and/or bias. We also examined correlations between plasma and CSF NfL concentrations within and across assays and evaluated their ability to differentiate healthy controls from individuals with ALS.
Results: Four of the five assays demonstrated exemplary performance based on our analyses of precision and parallelism. Across the five assays, NfL concentrations were lower in plasma than in CSF, although they displayed a high degree of correlation. We noted bias across assays; plasma NfL concentrations were lowest for the Roche assay and highest for the ProteinSimple assay. In addition, all assays reliably distinguished healthy controls from individuals with ALS using plasma or CSF NfL.
Conclusions: Four NfL assays demonstrated similar analytic performance. Alongside performance, other factors such as costs, accessibility, usability, footprint, and intended use, should be considered.
期刊介绍:
Clinical Chemistry and Laboratory Medicine (CCLM) publishes articles on novel teaching and training methods applicable to laboratory medicine. CCLM welcomes contributions on the progress in fundamental and applied research and cutting-edge clinical laboratory medicine. It is one of the leading journals in the field, with an impact factor over 3. CCLM is issued monthly, and it is published in print and electronically.
CCLM is the official journal of the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) and publishes regularly EFLM recommendations and news. CCLM is the official journal of the National Societies from Austria (ÖGLMKC); Belgium (RBSLM); Germany (DGKL); Hungary (MLDT); Ireland (ACBI); Italy (SIBioC); Portugal (SPML); and Slovenia (SZKK); and it is affiliated to AACB (Australia) and SFBC (France).
Topics:
- clinical biochemistry
- clinical genomics and molecular biology
- clinical haematology and coagulation
- clinical immunology and autoimmunity
- clinical microbiology
- drug monitoring and analysis
- evaluation of diagnostic biomarkers
- disease-oriented topics (cardiovascular disease, cancer diagnostics, diabetes)
- new reagents, instrumentation and technologies
- new methodologies
- reference materials and methods
- reference values and decision limits
- quality and safety in laboratory medicine
- translational laboratory medicine
- clinical metrology
Follow @cclm_degruyter on Twitter!