Inactivation of KhpB (EloR/Jag) in Lactococcus cremoris increases uptake of the compatible solute glycine-betaine and enhances osmoresistance.

IF 3.7 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Yuwei Xiang, Huong Thi Pham, Yosephine Gumulya, Zhao-Xun Liang, Esteban Marcellin, Mark S Turner
{"title":"Inactivation of KhpB (EloR/Jag) in <i>Lactococcus cremoris</i> increases uptake of the compatible solute glycine-betaine and enhances osmoresistance.","authors":"Yuwei Xiang, Huong Thi Pham, Yosephine Gumulya, Zhao-Xun Liang, Esteban Marcellin, Mark S Turner","doi":"10.1128/aem.00914-25","DOIUrl":null,"url":null,"abstract":"<p><p>The second messenger cyclic-di-AMP (c-di-AMP) is a signaling molecule widely present in gram-positive bacteria, where it regulates osmotic resistance by controlling potassium and compatible solute transport. Our previous studies using a <i>Lactococcus cremoris</i> model strain demonstrated that mutants with elevated c-di-AMP can overcome osmosensitivity through mutations enhancing potassium transporter activity. To identify additional mechanisms that enhance osmoresistance, we conducted a salt-resistance suppressor screen in an industrial <i>L. cremoris</i> strain. Using a spontaneous GdpP phosphodiesterase mutant with high c-di-AMP, we isolated salt-resistant suppressor mutants harboring six independent mutations in the <i>khpB</i> gene. These <i>khpB</i> mutants maintained elevated c-di-AMP levels comparable to the parental <i>gdpP</i> mutant. Inactivating <i>khpB</i> in wild-type and <i>gdpP</i> mutant laboratory <i>L. cremoris</i> strains similarly enhanced osmoresistance. KhpB (also known as EloR/Jag) is a putative RNA-binding protein, and its inactivation increased RNA transcript and protein expression of the glycine-betaine transporter BusAA-AB, elevating intracellular glycine-betaine uptake. Additionally, <i>khpB</i> disruption resulted in reduced cell size and enhanced secretion of native cell wall-degrading enzymes. Thus, KhpB likely acts as an indirect repressor of osmoresistance in <i>L. cremoris</i> by negatively regulating glycine-betaine transporter production.IMPORTANCE<i>Lactococcus cremoris</i> is a model lactic acid bacterium and an industrially valuable fermentation starter culture. Similar to other gram-positive bacteria, <i>L. cremoris</i> utilizes the nucleotide messenger c-di-AMP to manage responses to osmotic stress. A suppressor screen aimed at restoring salt resistance in a high c-di-AMP mutant identified several independent mutations within the <i>khpB</i> gene. Our results demonstrate that <i>khpB</i> disruption elevates intracellular glycine-betaine concentrations, a prominent osmoprotectant. Notably, <i>khpB</i> inactivation also reduced cell size and enhanced the secretion of native cell wall-degrading enzymes. This study thus reveals KhpB as a negative regulator of osmotic stress resistance in <i>L. cremoris</i>, thereby expanding our understanding of bacterial osmoadaptation mechanisms.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0091425"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/aem.00914-25","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The second messenger cyclic-di-AMP (c-di-AMP) is a signaling molecule widely present in gram-positive bacteria, where it regulates osmotic resistance by controlling potassium and compatible solute transport. Our previous studies using a Lactococcus cremoris model strain demonstrated that mutants with elevated c-di-AMP can overcome osmosensitivity through mutations enhancing potassium transporter activity. To identify additional mechanisms that enhance osmoresistance, we conducted a salt-resistance suppressor screen in an industrial L. cremoris strain. Using a spontaneous GdpP phosphodiesterase mutant with high c-di-AMP, we isolated salt-resistant suppressor mutants harboring six independent mutations in the khpB gene. These khpB mutants maintained elevated c-di-AMP levels comparable to the parental gdpP mutant. Inactivating khpB in wild-type and gdpP mutant laboratory L. cremoris strains similarly enhanced osmoresistance. KhpB (also known as EloR/Jag) is a putative RNA-binding protein, and its inactivation increased RNA transcript and protein expression of the glycine-betaine transporter BusAA-AB, elevating intracellular glycine-betaine uptake. Additionally, khpB disruption resulted in reduced cell size and enhanced secretion of native cell wall-degrading enzymes. Thus, KhpB likely acts as an indirect repressor of osmoresistance in L. cremoris by negatively regulating glycine-betaine transporter production.IMPORTANCELactococcus cremoris is a model lactic acid bacterium and an industrially valuable fermentation starter culture. Similar to other gram-positive bacteria, L. cremoris utilizes the nucleotide messenger c-di-AMP to manage responses to osmotic stress. A suppressor screen aimed at restoring salt resistance in a high c-di-AMP mutant identified several independent mutations within the khpB gene. Our results demonstrate that khpB disruption elevates intracellular glycine-betaine concentrations, a prominent osmoprotectant. Notably, khpB inactivation also reduced cell size and enhanced the secretion of native cell wall-degrading enzymes. This study thus reveals KhpB as a negative regulator of osmotic stress resistance in L. cremoris, thereby expanding our understanding of bacterial osmoadaptation mechanisms.

cremoris乳球菌中KhpB (EloR/Jag)的失活增加了相容溶质甘氨酸-甜菜碱的摄取并增强了渗透阻力。
第二信使环二磷酸腺苷(c-二磷酸腺苷)是一种广泛存在于革兰氏阳性细菌中的信号分子,它通过控制钾和相容溶质运输来调节渗透阻力。我们之前对cremoris乳球菌模型菌株的研究表明,c-di-AMP升高的突变体可以通过突变增强钾转运蛋白活性来克服渗透敏感性。为了确定增强渗透性的其他机制,我们在工业L. cremoris菌株中进行了耐盐抑制筛选。利用具有高c-二磷酸腺苷的自发性GdpP磷酸二酯酶突变体,我们分离出了含有六个独立突变的khpB基因的耐盐抑制突变体。这些khpB突变体保持与亲本gdpP突变体相当的升高的c-二- amp水平。在野生型和gdpP突变型实验室菌株中灭活khpB同样增强了渗透抗性。KhpB(也被称为EloR/Jag)是一种公认的RNA结合蛋白,它的失活增加了甘氨酸-甜菜碱转运蛋白BusAA-AB的RNA转录和蛋白质表达,提高了细胞内甘氨酸-甜菜碱的摄取。此外,khpB破坏导致细胞大小减小和天然细胞壁降解酶的分泌增加。因此,KhpB可能通过负调控甘氨酸-甜菜碱转运体的产生而间接抑制L. cremoris的渗透抗性。乳酸菌是一种模式乳酸菌,也是一种具有工业价值的发酵剂。与其他革兰氏阳性细菌类似,L. cremoris利用核苷酸信使c-di-AMP来管理对渗透胁迫的反应。一项旨在恢复高c-di-AMP突变体耐盐性的抑制因子筛选在khpB基因中发现了几个独立的突变。我们的研究结果表明,khpB破坏会提高细胞内甘氨酸-甜菜碱浓度,这是一种重要的渗透保护剂。值得注意的是,khpB失活还减少了细胞大小,增加了天然细胞壁降解酶的分泌。因此,本研究揭示了KhpB作为L. cremoris渗透胁迫抗性的负调节因子,从而扩大了我们对细菌渗透适应机制的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied and Environmental Microbiology
Applied and Environmental Microbiology 生物-生物工程与应用微生物
CiteScore
7.70
自引率
2.30%
发文量
730
审稿时长
1.9 months
期刊介绍: Applied and Environmental Microbiology (AEM) publishes papers that make significant contributions to (a) applied microbiology, including biotechnology, protein engineering, bioremediation, and food microbiology, (b) microbial ecology, including environmental, organismic, and genomic microbiology, and (c) interdisciplinary microbiology, including invertebrate microbiology, plant microbiology, aquatic microbiology, and geomicrobiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信