First-Principles Study on Direct Z-Scheme WSi2N4/C2N van der Waals Heterostructure Photocatalyst

IF 0.8 4区 化学 Q4 CHEMISTRY, PHYSICAL
Xiang Wang, Lina Yuan, Tianhang Deng, Chengyong Xu, Jianwen Li
{"title":"First-Principles Study on Direct Z-Scheme WSi2N4/C2N van der Waals Heterostructure Photocatalyst","authors":"Xiang Wang,&nbsp;Lina Yuan,&nbsp;Tianhang Deng,&nbsp;Chengyong Xu,&nbsp;Jianwen Li","doi":"10.1134/S0036024425701730","DOIUrl":null,"url":null,"abstract":"<p>Two-dimensional van der Waals heterostructures (vdWHs) have garnered significant attention owing to their promising applications in photocatalytic water splitting. Developing efficient photocatalysts with low recombination rate of photogenerated carriers and superb optical property remains a stern challenge. Here, the electronic and photocatalytic performances of WSi<sub>2</sub>N<sub>4</sub>/C<sub>2</sub>N vdWH were examined applying first-principles approach. Research results demonstrate that WSi<sub>2</sub>N<sub>4</sub>/C<sub>2</sub>N vdWH has sufficient thermodynamic stability. WSi<sub>2</sub>N<sub>4</sub>/C<sub>2</sub>N vdWH possesses a staggered band arrangement with direct HSE06 band gap of 1.501 eV. Built-in electric field directing from WSi<sub>2</sub>N<sub>4</sub> to C<sub>2</sub>N can facilitate photogenerated carrier transfer along direct Z-shaped path, which is advantageous for effective electron-hole separations. Importantly, WSi<sub>2</sub>N<sub>4</sub>/C<sub>2</sub>N vdWH shows appropriate band edge positions that satisfy criteria for efficient photocatalyst and displays a more outstanding light absorption capacity than WSi<sub>2</sub>N<sub>4</sub> monolayer and C<sub>2</sub>N monolayer. This present study offers theoretical support for designing and preparing WSi<sub>2</sub>N<sub>4</sub>/C<sub>2</sub>N vdWH.</p>","PeriodicalId":767,"journal":{"name":"Russian Journal of Physical Chemistry A","volume":"99 9","pages":"2277 - 2286"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Physical Chemistry A","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S0036024425701730","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional van der Waals heterostructures (vdWHs) have garnered significant attention owing to their promising applications in photocatalytic water splitting. Developing efficient photocatalysts with low recombination rate of photogenerated carriers and superb optical property remains a stern challenge. Here, the electronic and photocatalytic performances of WSi2N4/C2N vdWH were examined applying first-principles approach. Research results demonstrate that WSi2N4/C2N vdWH has sufficient thermodynamic stability. WSi2N4/C2N vdWH possesses a staggered band arrangement with direct HSE06 band gap of 1.501 eV. Built-in electric field directing from WSi2N4 to C2N can facilitate photogenerated carrier transfer along direct Z-shaped path, which is advantageous for effective electron-hole separations. Importantly, WSi2N4/C2N vdWH shows appropriate band edge positions that satisfy criteria for efficient photocatalyst and displays a more outstanding light absorption capacity than WSi2N4 monolayer and C2N monolayer. This present study offers theoretical support for designing and preparing WSi2N4/C2N vdWH.

Abstract Image

Abstract Image

直接z型WSi2N4/C2N异质结构光催化剂的第一性原理研究
二维范德华异质结构(vdWHs)由于在光催化水分解中具有广阔的应用前景而引起了人们的广泛关注。开发具有低复合率和光生载体和优良光学性能的高效光催化剂仍然是一个严峻的挑战。本文采用第一性原理方法研究了WSi2N4/C2N vdWH的电子和光催化性能。研究结果表明,WSi2N4/C2N vdWH具有足够的热力学稳定性。WSi2N4/C2N vdWH具有交错带排列,直接HSE06带隙为1.501 eV。内置电场从WSi2N4指向C2N,可以促进光生载流子沿直接z形路径转移,有利于有效的电子空穴分离。重要的是,WSi2N4/C2N vdWH显示出合适的能带边缘位置,满足高效光催化剂的标准,并且比WSi2N4单层和C2N单层表现出更出色的光吸收能力。本研究为WSi2N4/C2N vdWH的设计和制备提供了理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
376
审稿时长
5.1 months
期刊介绍: Russian Journal of Physical Chemistry A. Focus on Chemistry (Zhurnal Fizicheskoi Khimii), founded in 1930, offers a comprehensive review of theoretical and experimental research from the Russian Academy of Sciences, leading research and academic centers from Russia and from all over the world. Articles are devoted to chemical thermodynamics and thermochemistry, biophysical chemistry, photochemistry and magnetochemistry, materials structure, quantum chemistry, physical chemistry of nanomaterials and solutions, surface phenomena and adsorption, and methods and techniques of physicochemical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信