Potential photochemical controls on trace metals and rare earth elements in an acid mine drainage impacted wetland

IF 3.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Lauren Magliozzi, Sabre Duren, Diane McKnight
{"title":"Potential photochemical controls on trace metals and rare earth elements in an acid mine drainage impacted wetland","authors":"Lauren Magliozzi,&nbsp;Sabre Duren,&nbsp;Diane McKnight","doi":"10.1007/s10533-025-01271-2","DOIUrl":null,"url":null,"abstract":"<div><p>Recent climate trends in the Colorado Mineral Belt have intensified acid mine drainage (AMD) impacts, increasing the importance to understand trace metal and rare earth element (REE) cycling in affected watersheds. This diel study investigated biogeochemical and photochemical controls on metal and REE mobility in an AMD-impacted wetland below a large, abandoned mine. Daily photochemical cycling of H<sub>2</sub>O<sub>2</sub> and iron species drove complex metal mobility patterns for both trace metals and REEs, with Cu, Cd, and Pb increasing during peak daylight hours (30%, 9%, and 113% respectively), while Zn, Mn, and Al decreased by 9%, 14% and 19%, respectively. REE concentrations frequently exceeded 100 µg/L for Ce, Nd, and Y, with both light REEs (LREEs) and heavy REEs (HREEs) exhibiting photochemically-driven diel fluctuations. Ce, Nd, Gd, Pr, and La concentrations increased by 3–10% during daylight hours, while Y and Dy decreased slightly (2–4%), and Sm decreased by 20%. Cerium anomaly calculations revealed distinct spatial patterns across the wetland-groundwater-creek continuum, with values ranging from 0.73 to 0.90, indicating ongoing oxidative processing of REEs throughout the system driven by retention time. These findings demonstrate that AMD-impacted wetlands are not simple flow-through systems, but rather complex environments where photochemical processes influence the cycling of both trace metals and REEs, with important implications for water quality management.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"168 5","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-025-01271-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeochemistry","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10533-025-01271-2","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Recent climate trends in the Colorado Mineral Belt have intensified acid mine drainage (AMD) impacts, increasing the importance to understand trace metal and rare earth element (REE) cycling in affected watersheds. This diel study investigated biogeochemical and photochemical controls on metal and REE mobility in an AMD-impacted wetland below a large, abandoned mine. Daily photochemical cycling of H2O2 and iron species drove complex metal mobility patterns for both trace metals and REEs, with Cu, Cd, and Pb increasing during peak daylight hours (30%, 9%, and 113% respectively), while Zn, Mn, and Al decreased by 9%, 14% and 19%, respectively. REE concentrations frequently exceeded 100 µg/L for Ce, Nd, and Y, with both light REEs (LREEs) and heavy REEs (HREEs) exhibiting photochemically-driven diel fluctuations. Ce, Nd, Gd, Pr, and La concentrations increased by 3–10% during daylight hours, while Y and Dy decreased slightly (2–4%), and Sm decreased by 20%. Cerium anomaly calculations revealed distinct spatial patterns across the wetland-groundwater-creek continuum, with values ranging from 0.73 to 0.90, indicating ongoing oxidative processing of REEs throughout the system driven by retention time. These findings demonstrate that AMD-impacted wetlands are not simple flow-through systems, but rather complex environments where photochemical processes influence the cycling of both trace metals and REEs, with important implications for water quality management.

酸性矿山废水中痕量金属和稀土元素的潜在光化学控制影响湿地
科罗拉多矿带近年来的气候变化趋势加剧了酸性矿山排水(AMD)的影响,增加了了解受影响流域微量金属和稀土元素(REE)循环的重要性。本实验研究了生物地球化学和光化学对大型废弃矿山下受amd影响湿地中金属和稀土元素迁移的控制。H2O2和铁的日光化学循环驱动了微量金属和稀土的复杂金属迁移模式,Cu、Cd和Pb在白天高峰时段分别增加了30%、9%和113%,而Zn、Mn和Al分别下降了9%、14%和19%。Ce、Nd和Y的REE浓度经常超过100µg/L,轻REE (lree)和重REE (hree)都表现出光化学驱动的波动。白天Ce、Nd、Gd、Pr和La浓度增加了3-10%,Y和Dy浓度略有下降(2-4%),Sm浓度下降了20%。铈异常计算结果显示,在整个湿地-地下水-溪流连续统中存在明显的空间格局,其值在0.73 ~ 0.90之间,表明在保留时间的驱动下,整个系统中稀土元素正在进行氧化处理。这些发现表明,受amd影响的湿地不是简单的流动系统,而是光化学过程影响微量金属和稀土循环的复杂环境,对水质管理具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biogeochemistry
Biogeochemistry 环境科学-地球科学综合
CiteScore
7.10
自引率
5.00%
发文量
112
审稿时长
3.2 months
期刊介绍: Biogeochemistry publishes original and synthetic papers dealing with biotic controls on the chemistry of the environment, or with the geochemical control of the structure and function of ecosystems. Cycles are considered, either of individual elements or of specific classes of natural or anthropogenic compounds in ecosystems. Particular emphasis is given to coupled interactions of element cycles. The journal spans from the molecular to global scales to elucidate the mechanisms driving patterns in biogeochemical cycles through space and time. Studies on both natural and artificial ecosystems are published when they contribute to a general understanding of biogeochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信