{"title":"PhaseMamba: A Mamba-Based Deep Learning Model for Seismic Phase Picking and Detection","authors":"Yunfei Zhou;Haoran Ren;Haofeng Wu","doi":"10.1109/LGRS.2025.3603915","DOIUrl":null,"url":null,"abstract":"Seismic phase picking is a critical task for earthquake detection and localization, where traditional methods rely on manual parameter tuning and have great difficulty to capture complex temporal features. In this letter, we propose PhaseMamba, an automated seismic phase picking and detection model that leverages deep learning through a U-shaped architecture with skip connections for effective time-domain seismic signal analysis, while incorporating a state-space Mamba model to enhance long-term contextual dependency extraction capabilities. For training, validation, and testing, we utilize the open-source global seismic dataset, Stanford Earthquake Dataset (STEAD), which provides a diverse range of high-quality seismic waveforms. Comprehensive experiments are conducted on this dataset to evaluate the model’s performance. The results demonstrate that PhaseMamba achieves superior performance in P-wave arrival picking compared with all state-of-the-art models (PhaseNet, EQTransformer, and SeisT), while showing comparable or slightly lower performance in S-wave arrival picking. These findings suggest that PhaseMamba is a promising tool for advancing seismic phase picking and contributing to broader seismic research applications.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11143210/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Seismic phase picking is a critical task for earthquake detection and localization, where traditional methods rely on manual parameter tuning and have great difficulty to capture complex temporal features. In this letter, we propose PhaseMamba, an automated seismic phase picking and detection model that leverages deep learning through a U-shaped architecture with skip connections for effective time-domain seismic signal analysis, while incorporating a state-space Mamba model to enhance long-term contextual dependency extraction capabilities. For training, validation, and testing, we utilize the open-source global seismic dataset, Stanford Earthquake Dataset (STEAD), which provides a diverse range of high-quality seismic waveforms. Comprehensive experiments are conducted on this dataset to evaluate the model’s performance. The results demonstrate that PhaseMamba achieves superior performance in P-wave arrival picking compared with all state-of-the-art models (PhaseNet, EQTransformer, and SeisT), while showing comparable or slightly lower performance in S-wave arrival picking. These findings suggest that PhaseMamba is a promising tool for advancing seismic phase picking and contributing to broader seismic research applications.