Enhancing Change Detection With Edge-Guided Difference Modeling in Remote Sensing Imagery

IF 4.4
Pengkai Wang;Fuchao Cheng;Yuan Yao;Liang Liu;Jianwei Zhang;Abdelaziz Bouras;D. Narasimhan;Ling Qin;Shaohua Wang;Chang Liu
{"title":"Enhancing Change Detection With Edge-Guided Difference Modeling in Remote Sensing Imagery","authors":"Pengkai Wang;Fuchao Cheng;Yuan Yao;Liang Liu;Jianwei Zhang;Abdelaziz Bouras;D. Narasimhan;Ling Qin;Shaohua Wang;Chang Liu","doi":"10.1109/LGRS.2025.3604110","DOIUrl":null,"url":null,"abstract":"Change detection (CD) in remote sensing (RS) imagery remains challenging due to boundary ambiguity and false alarms caused by high foreground–background similarity and insufficient difference representation. To address these issues, we propose an edge-guided difference enhancement network (EGDENet). EGDENet integrates an edge-aware adaptive enhancement module (EAEM) to extract high-frequency edge cues across scales, and a channel-spatial cooperative difference module (CSCDM) to refine change features by jointly leveraging spatial and channel-wise differences. An upsampling feature fusion (UFF) further enhances robustness to scale variations and improves region consistency. Extensive experiments on two public datasets demonstrate that EGDENet achieves superior performance with clearer boundaries compared to state-of-the-art methods. Our source code is publicly available at <uri>https://github.com/adleess/-EGDENet</uri>","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11145093/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Change detection (CD) in remote sensing (RS) imagery remains challenging due to boundary ambiguity and false alarms caused by high foreground–background similarity and insufficient difference representation. To address these issues, we propose an edge-guided difference enhancement network (EGDENet). EGDENet integrates an edge-aware adaptive enhancement module (EAEM) to extract high-frequency edge cues across scales, and a channel-spatial cooperative difference module (CSCDM) to refine change features by jointly leveraging spatial and channel-wise differences. An upsampling feature fusion (UFF) further enhances robustness to scale variations and improves region consistency. Extensive experiments on two public datasets demonstrate that EGDENet achieves superior performance with clearer boundaries compared to state-of-the-art methods. Our source code is publicly available at https://github.com/adleess/-EGDENet
利用边缘引导差分建模增强遥感图像变化检测
由于前景与背景相似性高、差异表示不充分等原因导致边界模糊和虚警,遥感图像的变化检测仍然具有挑战性。为了解决这些问题,我们提出了一种边缘引导差分增强网络(EGDENet)。EGDENet集成了一个边缘感知自适应增强模块(EAEM),用于提取跨尺度的高频边缘线索,以及一个通道-空间合作差异模块(CSCDM),通过共同利用空间和通道差异来细化变化特征。上采样特征融合(UFF)进一步增强了对尺度变化的鲁棒性,提高了区域一致性。在两个公共数据集上进行的大量实验表明,与最先进的方法相比,EGDENet在边界更清晰的情况下取得了卓越的性能。我们的源代码可以在https://github.com/adleess/-EGDENet上公开获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信