Impact of Hot Carrier Dynamics on Photoelectrocatalytic Activity on Au@Pd Antenna-Reactor Nanoparticles

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hyewon Park, , , Seunghyun Chun, , , Jeong Hoon Lee, , , Jihan Son, , , Sookyung Kim, , , Jungkweon Choi, , , Hyotcherl Ihee*, , , Hyosun Lee*, , and , Jeong Young Park*, 
{"title":"Impact of Hot Carrier Dynamics on Photoelectrocatalytic Activity on Au@Pd Antenna-Reactor Nanoparticles","authors":"Hyewon Park,&nbsp;, ,&nbsp;Seunghyun Chun,&nbsp;, ,&nbsp;Jeong Hoon Lee,&nbsp;, ,&nbsp;Jihan Son,&nbsp;, ,&nbsp;Sookyung Kim,&nbsp;, ,&nbsp;Jungkweon Choi,&nbsp;, ,&nbsp;Hyotcherl Ihee*,&nbsp;, ,&nbsp;Hyosun Lee*,&nbsp;, and ,&nbsp;Jeong Young Park*,&nbsp;","doi":"10.1021/jacs.5c12825","DOIUrl":null,"url":null,"abstract":"<p >Photoinduced hot carriers generated from the decay of surface plasmons in noble metals play a decisive role in producing green hydrogen gas through the photoelectrochemical (PEC) water splitting reaction, a process driven by visible light absorption. To optimize the utilization of these hot carriers, we employed a plasmonic antenna-reactor model based on core–shell structured Au@Pd nanoparticles (NPs) with an ultrathin Pd shell. In this study, we demonstrate that TiO<sub>2</sub> nanotube arrays (TNAs) decorated with Au@Pd NPs exhibit superior performance with the Pd shell serving as a catalytic reactor that efficiently extracts hot carriers from the plasmonic Au antenna. The photocatalytic performance in PEC measurements increased with higher Pd coverage, and Au<sub>70</sub>@Pd<sub>30</sub>/TNAs exhibited a 2.2-fold higher photocurrent compared with bare Au/TNAs. The enhanced oxygen evolution reaction (OER) activity observed for Au<sub>70</sub>@Pd<sub>30</sub>/TNAs is attributed to the higher population of hot holes on the surface of Au@Pd NPs, which enhances the oxidation capability for interactions with electrolytes. Femtosecond transient absorption (fs-TA) spectra of Au@Pd NPs revealed a shorter lifetime of hot electrons through electron–phonon (e–p) scattering in Au<sub>70</sub>@Pd<sub>30</sub> NPs compared to Au NPs, indicating suppressed charge recombination and increased hot hole population on the surface. Therefore, this study suggests that the plasmonic antenna-reactor model, critically influenced by hot carrier dynamics, provides a promising framework for efficient photoelectrocatalytic systems.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 39","pages":"35913–35923"},"PeriodicalIF":15.6000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.5c12825","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photoinduced hot carriers generated from the decay of surface plasmons in noble metals play a decisive role in producing green hydrogen gas through the photoelectrochemical (PEC) water splitting reaction, a process driven by visible light absorption. To optimize the utilization of these hot carriers, we employed a plasmonic antenna-reactor model based on core–shell structured Au@Pd nanoparticles (NPs) with an ultrathin Pd shell. In this study, we demonstrate that TiO2 nanotube arrays (TNAs) decorated with Au@Pd NPs exhibit superior performance with the Pd shell serving as a catalytic reactor that efficiently extracts hot carriers from the plasmonic Au antenna. The photocatalytic performance in PEC measurements increased with higher Pd coverage, and Au70@Pd30/TNAs exhibited a 2.2-fold higher photocurrent compared with bare Au/TNAs. The enhanced oxygen evolution reaction (OER) activity observed for Au70@Pd30/TNAs is attributed to the higher population of hot holes on the surface of Au@Pd NPs, which enhances the oxidation capability for interactions with electrolytes. Femtosecond transient absorption (fs-TA) spectra of Au@Pd NPs revealed a shorter lifetime of hot electrons through electron–phonon (e–p) scattering in Au70@Pd30 NPs compared to Au NPs, indicating suppressed charge recombination and increased hot hole population on the surface. Therefore, this study suggests that the plasmonic antenna-reactor model, critically influenced by hot carrier dynamics, provides a promising framework for efficient photoelectrocatalytic systems.

Abstract Image

热载流子动力学对Au@Pd天线反应器纳米颗粒光电催化活性的影响。
贵金属表面等离子体衰变产生的光致热载子在可见光吸收驱动的光电化学(PEC)水分解反应中产生绿色氢气起着决定性的作用。为了优化这些热载流子的利用,我们采用了一种基于核-壳结构Au@Pd纳米粒子(NPs)的等离子体天线-反应器模型,该模型具有超薄Pd壳。在这项研究中,我们证明了用Au@Pd NPs修饰的TiO2纳米管阵列(tna)表现出优异的性能,其中Pd壳作为催化反应器,可以有效地从等离子体Au天线中提取热载流子。在PEC测量中,光催化性能随着Pd覆盖率的增加而提高,Au70@Pd30/ tna的光电流比裸Au/ tna高2.2倍。Au70@Pd30/ tna的析氧反应(OER)活性增强是由于Au@Pd NPs表面有更多的热孔,这增强了与电解质相互作用的氧化能力。Au@Pd NPs的飞秒瞬态吸收(fs-TA)光谱显示,与Au NPs相比,Au70@Pd30 NPs中通过电子-声子(e-p)散射的热电子寿命更短,这表明抑制了电荷复合,增加了表面的热空穴数量。因此,这项研究表明,受热载流子动力学严重影响的等离子体天线-反应器模型为高效光电催化系统提供了一个有前途的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信