Comparative Evaluation of Clinical Large Language Models and Machine Learning to Predict Antimicrobial Resistance in Hospital-Onset Sepsis.

Scott A Cohen, Ziyi Chen, Jiang Bian, Christina Boucher, Yonghui Wu, Mattia Prosperi
{"title":"Comparative Evaluation of Clinical Large Language Models and Machine Learning to Predict Antimicrobial Resistance in Hospital-Onset Sepsis.","authors":"Scott A Cohen, Ziyi Chen, Jiang Bian, Christina Boucher, Yonghui Wu, Mattia Prosperi","doi":"10.1007/978-3-031-95838-0_7","DOIUrl":null,"url":null,"abstract":"<p><p>Approaches to guide empiric antimicrobial therapy are needed, especially in critically ill populations with prevalent antimicrobial resistance (AMR). While artificial intelligence shows promise in predicting AMR, scalable and generalizable prediction models are essential for broad clinical adoption. We utilized a publicly available clinical large language model (LLM), Gatortron, in comparison to traditional machine learning, to predict AMR and methicillin-resistant <i>Staphylococcus aureus</i> (MRSA)-specific patterns within a hospital-onset sepsis cohort using electronic health record (EHR) data available at time of illness onset. EHR data from approximately 150,000 hospitalizations with a documented bacterial infection at a large tertiary care healthcare system between 2010 and 2023 were examined. Among 2,019 eligible hospital-onset sepsis encounters, an AMR pathogen was identified in 911 (45%) and MRSA was isolated in 234 (26%). LLMs outperformed traditional models in predicting MRSA, achieving an AUC of 0.73 compared to 0.66 for the best traditional ML model, with superior F1 scores (0.43 vs. 0.16 for ML). Negative predictive value for MRSA prediction using LLM was at least 90% across majority of infection presentations. The LLM's superior prediction using a relatively simplified feature set demonstrates the potential of leveraging EHR data for early resistance prediction, though further refinement is needed to enhance sensitivity and clinical applicability.</p>","PeriodicalId":72303,"journal":{"name":"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )","volume":"15734 ","pages":"65-76"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12433606/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence in medicine. Conference on Artificial Intelligence in Medicine (2005- )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-95838-0_7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/23 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Approaches to guide empiric antimicrobial therapy are needed, especially in critically ill populations with prevalent antimicrobial resistance (AMR). While artificial intelligence shows promise in predicting AMR, scalable and generalizable prediction models are essential for broad clinical adoption. We utilized a publicly available clinical large language model (LLM), Gatortron, in comparison to traditional machine learning, to predict AMR and methicillin-resistant Staphylococcus aureus (MRSA)-specific patterns within a hospital-onset sepsis cohort using electronic health record (EHR) data available at time of illness onset. EHR data from approximately 150,000 hospitalizations with a documented bacterial infection at a large tertiary care healthcare system between 2010 and 2023 were examined. Among 2,019 eligible hospital-onset sepsis encounters, an AMR pathogen was identified in 911 (45%) and MRSA was isolated in 234 (26%). LLMs outperformed traditional models in predicting MRSA, achieving an AUC of 0.73 compared to 0.66 for the best traditional ML model, with superior F1 scores (0.43 vs. 0.16 for ML). Negative predictive value for MRSA prediction using LLM was at least 90% across majority of infection presentations. The LLM's superior prediction using a relatively simplified feature set demonstrates the potential of leveraging EHR data for early resistance prediction, though further refinement is needed to enhance sensitivity and clinical applicability.

临床大语言模型和机器学习预测医院源性败血症抗菌素耐药性的比较评价
需要指导经验性抗菌素治疗的方法,特别是在普遍存在抗菌素耐药性(AMR)的重症人群中。虽然人工智能在预测抗菌素耐药性方面显示出前景,但可扩展和可推广的预测模型对于广泛的临床应用至关重要。与传统机器学习相比,我们利用公开的临床大语言模型Gatortron,利用发病时可用的电子健康记录(EHR)数据,预测医院发病脓毒症队列中的AMR和耐甲氧西林金黄色葡萄球菌(MRSA)特异性模式。对2010年至2023年大型三级医疗保健系统中约15万例记录在案的细菌感染住院患者的电子病历数据进行了检查。在2019例符合条件的医院发生的败血症中,911例(45%)鉴定出AMR病原体,234例(26%)分离出MRSA。LLMs在预测MRSA方面优于传统模型,AUC为0.73,而最佳传统ML模型的AUC为0.66,F1得分更高(0.43比0.16)。在大多数感染表现中,使用LLM预测MRSA的阴性预测值至少为90%。LLM使用相对简化的特征集进行优越的预测,表明利用EHR数据进行早期耐药预测的潜力,尽管需要进一步改进以提高敏感性和临床适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信