Ecg-based arrhythmia classification using discrete wavelet transform and attention-enhanced CNN-BiGRU model.

IF 2 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Xiaosong He, Chuanli Hu, Kai Ma, Jie Huang, Hongjing He
{"title":"Ecg-based arrhythmia classification using discrete wavelet transform and attention-enhanced CNN-BiGRU model.","authors":"Xiaosong He, Chuanli Hu, Kai Ma, Jie Huang, Hongjing He","doi":"10.1007/s13246-025-01639-6","DOIUrl":null,"url":null,"abstract":"<p><p>Electrocardiogram (ECG)-based arrhythmia classification is crucial for the early detection and diagnosis of cardiovascular diseases. However, the presence of noise in raw ECG signals presents significant challenges to classification performance. In this study, we propose a novel approach that combines discrete wavelet transform (DWT) for signal denoising with an Attention-Enhanced Convolutional Neural Network-Bidirectional Gated Recurrent Unit (CNN-BiGRU) model for arrhythmia classification. First, DWT is applied to eliminate noise while preserving essential morphological features of the ECG signals. To address class imbalance, the Borderline-SMOTE algorithm is applied to generate synthetic samples for minority classes. The preprocessed signals are then passed through a CNN for hierarchical feature extraction, followed by a BiGRU to capture temporal dependencies. An attention mechanism is integrated to emphasize the most informative regions of the signal, enhancing the model's discriminative capability. The proposed method was evaluated on the MIT-BIH arrhythmia database and achieved an accuracy of 99.22% across five arrhythmia categories, outperforming several existing methods. This approach provides an effective solution for automatic arrhythmia detection in clinical practice.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-025-01639-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocardiogram (ECG)-based arrhythmia classification is crucial for the early detection and diagnosis of cardiovascular diseases. However, the presence of noise in raw ECG signals presents significant challenges to classification performance. In this study, we propose a novel approach that combines discrete wavelet transform (DWT) for signal denoising with an Attention-Enhanced Convolutional Neural Network-Bidirectional Gated Recurrent Unit (CNN-BiGRU) model for arrhythmia classification. First, DWT is applied to eliminate noise while preserving essential morphological features of the ECG signals. To address class imbalance, the Borderline-SMOTE algorithm is applied to generate synthetic samples for minority classes. The preprocessed signals are then passed through a CNN for hierarchical feature extraction, followed by a BiGRU to capture temporal dependencies. An attention mechanism is integrated to emphasize the most informative regions of the signal, enhancing the model's discriminative capability. The proposed method was evaluated on the MIT-BIH arrhythmia database and achieved an accuracy of 99.22% across five arrhythmia categories, outperforming several existing methods. This approach provides an effective solution for automatic arrhythmia detection in clinical practice.

基于离散小波变换和注意增强CNN-BiGRU模型的心电图心律失常分类。
基于心电图的心律失常分类对于心血管疾病的早期发现和诊断至关重要。然而,原始心电信号中噪声的存在对分类性能提出了重大挑战。在这项研究中,我们提出了一种新的方法,将用于信号去噪的离散小波变换(DWT)与用于心律失常分类的注意力增强卷积神经网络双向门控循环单元(CNN-BiGRU)模型相结合。首先,在保持心电信号基本形态特征的同时,应用小波变换去除噪声。为了解决类不平衡问题,采用Borderline-SMOTE算法生成少数类的合成样本。然后将预处理后的信号通过CNN进行分层特征提取,然后通过BiGRU捕获时间依赖性。该模型集成了一个注意机制来强调信号中信息量最大的区域,增强了模型的判别能力。该方法在MIT-BIH心律失常数据库上进行了评估,在5种心律失常类别中准确率达到99.22%,优于几种现有方法。该方法为临床心律失常自动检测提供了有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.40
自引率
4.50%
发文量
110
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信