Benu Brata Das, Banhi Chowdhury, Sarita Das, Asmit Banerjee
{"title":"PARP1-Dependent and Independent Pathways for Resolution of Trapped Topoisomerase I Covalent Complexes.","authors":"Benu Brata Das, Banhi Chowdhury, Sarita Das, Asmit Banerjee","doi":"10.1080/10985549.2025.2555891","DOIUrl":null,"url":null,"abstract":"<p><p>Topoisomerase I (Top1) alleviates DNA supercoiling during replication and transcription, but its catalytic cycle can be hijacked by chemotherapeutic agents such as camptothecin (CPT), stabilizing Top1-DNA covalent complexes (Top1cc) that threaten genome integrity. Efficient resolution of these trapped intermediates is crucial to prevent replication stress, DNA breaks, and cell death. Poly (ADP-ribose) polymerase 1 (PARP1) is a key sensor of Top1cc, facilitating repair by recruiting tyrosyl-DNA phosphodiesterase 1 (TDP1) and modifying chromatin to promote lesion accessibility. Beyond this canonical pathway, emerging evidence highlights PARP1-independent mechanisms such as endo nucleolytic cleavage, proteolytic degradation of Top1 and replication-associated processing. Intriguingly, PARP1 appears to act as a molecular switch between TDP1 and the endonuclease pathway for the repair of Top1cc. This review highlights mechanisms of PARP1-dependent and -independent Top1cc repair pathways, their interplay and redundancy, and how their targeting can enhance Top1-based cancer therapies and overcome resistance.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":" ","pages":"1-20"},"PeriodicalIF":2.7000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10985549.2025.2555891","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Topoisomerase I (Top1) alleviates DNA supercoiling during replication and transcription, but its catalytic cycle can be hijacked by chemotherapeutic agents such as camptothecin (CPT), stabilizing Top1-DNA covalent complexes (Top1cc) that threaten genome integrity. Efficient resolution of these trapped intermediates is crucial to prevent replication stress, DNA breaks, and cell death. Poly (ADP-ribose) polymerase 1 (PARP1) is a key sensor of Top1cc, facilitating repair by recruiting tyrosyl-DNA phosphodiesterase 1 (TDP1) and modifying chromatin to promote lesion accessibility. Beyond this canonical pathway, emerging evidence highlights PARP1-independent mechanisms such as endo nucleolytic cleavage, proteolytic degradation of Top1 and replication-associated processing. Intriguingly, PARP1 appears to act as a molecular switch between TDP1 and the endonuclease pathway for the repair of Top1cc. This review highlights mechanisms of PARP1-dependent and -independent Top1cc repair pathways, their interplay and redundancy, and how their targeting can enhance Top1-based cancer therapies and overcome resistance.
期刊介绍:
Molecular and Cellular Biology (MCB) showcases significant discoveries in cellular morphology and function, genome organization, regulation of genetic expression, morphogenesis, and somatic cell genetics. The journal also examines viral systems, publishing papers that emphasize their impact on the cell.