Connexin and Pannexin Hemichannels: Broad-Spectrum Players in Neuroinflammatory Signaling

IF 4 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Juan C. Sáez, Francisco J. Ocaranza, Juan Prieto-Villalobos, Juan A. Orellana
{"title":"Connexin and Pannexin Hemichannels: Broad-Spectrum Players in Neuroinflammatory Signaling","authors":"Juan C. Sáez,&nbsp;Francisco J. Ocaranza,&nbsp;Juan Prieto-Villalobos,&nbsp;Juan A. Orellana","doi":"10.1111/jnc.70237","DOIUrl":null,"url":null,"abstract":"<p>Connexin- and pannexin-formed hemichannels have emerged as pivotal, upstream amplifiers of neuroinflammation. Under physiological stressors—depolarization, Ca<sup>2+</sup> overload, redox shift, or cytokine exposure—these large pores release adenosine triphosphate, glutamate, and other danger signals that activate P2X/P2Y and N-methyl-D-aspartate receptors, ignite NLR family pyrin domain containing (NLRP) 3 inflammasome, and propagate Ca<sup>2+</sup>/reactive oxygen species waves between mast cells, microglia, astrocytes, oligodendrocytes, neurons, and brain endothelium. Evidence across acute (e.g., stroke, trauma, seizure, and sepsis) and chronic (e.g., Alzheimer's, and multiple sclerosis) models shows that genetic ablation or pharmacological blockade of hemichannels shrinks lesions, preserves synaptic plasticity, restores blood–brain barrier integrity, and rescues cognition, often without altering the primary pathogenic trigger. Translational leads include mimetic peptides (e.g., Gap19, <sup>10</sup>panx1), the nanomolar, gap junction–sparing small-molecule D4, and the pleiotropic alkaloid boldine, all of which curb epileptiform activity, neurodegeneration, and depressive-like behavior. Yet key gaps persist, such as the long-term safety of chronic inhibition, which remains poorly defined and will be critical to translate these “gatekeeper” channels into next-generation neuro–anti-inflammatory therapeutics.</p><p>\n \n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":"169 9","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jnc.70237","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurochemistry","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jnc.70237","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Connexin- and pannexin-formed hemichannels have emerged as pivotal, upstream amplifiers of neuroinflammation. Under physiological stressors—depolarization, Ca2+ overload, redox shift, or cytokine exposure—these large pores release adenosine triphosphate, glutamate, and other danger signals that activate P2X/P2Y and N-methyl-D-aspartate receptors, ignite NLR family pyrin domain containing (NLRP) 3 inflammasome, and propagate Ca2+/reactive oxygen species waves between mast cells, microglia, astrocytes, oligodendrocytes, neurons, and brain endothelium. Evidence across acute (e.g., stroke, trauma, seizure, and sepsis) and chronic (e.g., Alzheimer's, and multiple sclerosis) models shows that genetic ablation or pharmacological blockade of hemichannels shrinks lesions, preserves synaptic plasticity, restores blood–brain barrier integrity, and rescues cognition, often without altering the primary pathogenic trigger. Translational leads include mimetic peptides (e.g., Gap19, 10panx1), the nanomolar, gap junction–sparing small-molecule D4, and the pleiotropic alkaloid boldine, all of which curb epileptiform activity, neurodegeneration, and depressive-like behavior. Yet key gaps persist, such as the long-term safety of chronic inhibition, which remains poorly defined and will be critical to translate these “gatekeeper” channels into next-generation neuro–anti-inflammatory therapeutics.

Abstract Image

连接蛋白和泛连接蛋白半通道:神经炎症信号的广谱参与者。
连接蛋白和泛连接蛋白形成的半通道已成为神经炎症的关键上游放大器。在去极化、Ca2+超载、氧化还原移位或细胞因子暴露等生理应激因素下,这些大孔释放三磷酸腺苷、谷氨酸和其他危险信号,激活P2X/P2Y和n -甲基-d -天冬氨酸受体,点燃NLR家族pyrin结构域(NLRP) 3炎性体,并在肥大细胞、小胶质细胞、星形胶质细胞、少突胶质细胞、神经元和脑内皮之间传播Ca2+/活性氧波。急性(如中风、创伤、癫痫和败血症)和慢性(如阿尔茨海默氏症和多发性硬化症)模型的证据表明,半通道的遗传消融或药物阻断可以缩小病变,保持突触可塑性,恢复血脑屏障的完整性,并恢复认知,通常不会改变主要致病因素。翻译先导包括模拟肽(例如,Gap19, 10panx1),纳摩尔,间隙连接保留小分子D4和多效生物碱,所有这些都可以抑制癫痫样活动,神经变性和抑郁样行为。然而,关键的差距仍然存在,例如慢性抑制的长期安全性仍然没有明确的定义,这将是将这些“守门人”通道转化为下一代神经抗炎疗法的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neurochemistry
Journal of Neurochemistry 医学-神经科学
CiteScore
9.30
自引率
2.10%
发文量
181
审稿时长
2.2 months
期刊介绍: Journal of Neurochemistry focuses on molecular, cellular and biochemical aspects of the nervous system, the pathogenesis of neurological disorders and the development of disease specific biomarkers. It is devoted to the prompt publication of original findings of the highest scientific priority and value that provide novel mechanistic insights, represent a clear advance over previous studies and have the potential to generate exciting future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信