{"title":"The success of artificial selection for collective composition hinges on initial and target values.","authors":"Juhee Lee, Wenying Shou, Hye Jin Park","doi":"10.7554/eLife.97461","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial collectives can perform functions beyond the capability of individual members. Enhancing collective functions through artificial selection is, however, challenging. Here, we explore the 'rafting-a-waterfall' metaphor where achieving a target population composition depends on both target and initial compositions. Specifically, collectives comprising fast-growing (F) and slow-growing (S) individuals were grown for 'maturation' time, and the collective with S-frequency closest to the target value is chosen to 'reproduce' via inoculating offspring collectives. During collective maturation, intra-collective selection acts like a waterfall, relentlessly driving the S-frequency to lower values, while during collective reproduction, inter-collective selection resembles a rafter striving to reach the target frequency. Using simulations and analytical calculations, we show that intermediate target S frequencies are the most challenging, akin to a target within the vertical drop of a waterfall, rather than above or below it. This arises because intra-collective selection is the strongest at intermediate S-frequencies, which can overpower inter-collective selection. While achieving a low target S frequencies is consistently feasible, attaining high target S-frequencies requires an initially high S-frequency - much like a raft that can descend but not ascend a waterfall. As Newborn size increases, the region of achievable target frequency is reduced until no frequency is achievable. In contrast, the number of collectives under selection plays a less critical role. In scenarios involving more than two populations, the evolutionary trajectory must navigate entirely away from the metaphorical 'waterfall drop.' Our findings illustrate that the strength of intra-collective evolution is frequency-dependent, with implications in experimental planning.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"13 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12435894/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.97461","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial collectives can perform functions beyond the capability of individual members. Enhancing collective functions through artificial selection is, however, challenging. Here, we explore the 'rafting-a-waterfall' metaphor where achieving a target population composition depends on both target and initial compositions. Specifically, collectives comprising fast-growing (F) and slow-growing (S) individuals were grown for 'maturation' time, and the collective with S-frequency closest to the target value is chosen to 'reproduce' via inoculating offspring collectives. During collective maturation, intra-collective selection acts like a waterfall, relentlessly driving the S-frequency to lower values, while during collective reproduction, inter-collective selection resembles a rafter striving to reach the target frequency. Using simulations and analytical calculations, we show that intermediate target S frequencies are the most challenging, akin to a target within the vertical drop of a waterfall, rather than above or below it. This arises because intra-collective selection is the strongest at intermediate S-frequencies, which can overpower inter-collective selection. While achieving a low target S frequencies is consistently feasible, attaining high target S-frequencies requires an initially high S-frequency - much like a raft that can descend but not ascend a waterfall. As Newborn size increases, the region of achievable target frequency is reduced until no frequency is achievable. In contrast, the number of collectives under selection plays a less critical role. In scenarios involving more than two populations, the evolutionary trajectory must navigate entirely away from the metaphorical 'waterfall drop.' Our findings illustrate that the strength of intra-collective evolution is frequency-dependent, with implications in experimental planning.
期刊介绍:
eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as:
Research Articles: Detailed reports of original research findings.
Short Reports: Concise presentations of significant findings that do not warrant a full-length research article.
Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research.
Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field.
Scientific Correspondence: Short communications that comment on or provide additional information related to published articles.
Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.