Raechel Davis, Oanh Dang, Suranjan De, Robert Ball
{"title":"Characterizing the FDA Adverse Event Reporting System (FAERS) as a Network to Improve Pattern Discovery.","authors":"Raechel Davis, Oanh Dang, Suranjan De, Robert Ball","doi":"10.1007/s40264-025-01609-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>In drug-safety monitoring systems, adverse events (AEs) associated with the use of medical products often consist of complex patterns of clinical events. Network analysis (NA) was used for pattern recognition and characterizing the Vaccine Adverse Event Reporting System (VAERS), but limited applications of NA to the US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) left its network description incomplete.</p><p><strong>Methods: </strong>In this analysis, the network properties of FAERS were characterized and leveraged to facilitate pattern discovery. Reported AE information in FAERS is represented using preferred terms (PTs) in Medical Dictionary for Regulatory Activities terminology. The FAERS subsets were analyzed with drugs and PTs as nodes and interconnections as edges. Global characteristics, like the scale-free nature of the distribution, were examined to explore theoretical and structural considerations. Metrics that assess connectivity and edge weighting algorithms based on report co-occurrence or clustering were applied.</p><p><strong>Results: </strong>Serious AE reports from 2016 to 2023 (2,062,099) were represented as a network of 20,965 nodes (16,847 PTs and 4116 drugs) with more than four million interconnections. Characteristics of FAERS subnetworks were determined with heavy-tailed degree distributions, high local clustering, and low diameters. Complexities related to structural and evolutionary characteristics were revealed as the log-normal model fits the degree distribution better than the power law.</p><p><strong>Conclusions: </strong>Network-based techniques identified clinically relevant patterns and clustering patterns representative of known adverse drug reactions. Comparisons to VAERS reveal similarities in networks of AE reporting systems. This initial systematic application of NA to FAERS describes the overall network characteristics of the FAERS database and provides insight into the use of network applications in drug safety research.</p>","PeriodicalId":11382,"journal":{"name":"Drug Safety","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Safety","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40264-025-01609-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: In drug-safety monitoring systems, adverse events (AEs) associated with the use of medical products often consist of complex patterns of clinical events. Network analysis (NA) was used for pattern recognition and characterizing the Vaccine Adverse Event Reporting System (VAERS), but limited applications of NA to the US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) left its network description incomplete.
Methods: In this analysis, the network properties of FAERS were characterized and leveraged to facilitate pattern discovery. Reported AE information in FAERS is represented using preferred terms (PTs) in Medical Dictionary for Regulatory Activities terminology. The FAERS subsets were analyzed with drugs and PTs as nodes and interconnections as edges. Global characteristics, like the scale-free nature of the distribution, were examined to explore theoretical and structural considerations. Metrics that assess connectivity and edge weighting algorithms based on report co-occurrence or clustering were applied.
Results: Serious AE reports from 2016 to 2023 (2,062,099) were represented as a network of 20,965 nodes (16,847 PTs and 4116 drugs) with more than four million interconnections. Characteristics of FAERS subnetworks were determined with heavy-tailed degree distributions, high local clustering, and low diameters. Complexities related to structural and evolutionary characteristics were revealed as the log-normal model fits the degree distribution better than the power law.
Conclusions: Network-based techniques identified clinically relevant patterns and clustering patterns representative of known adverse drug reactions. Comparisons to VAERS reveal similarities in networks of AE reporting systems. This initial systematic application of NA to FAERS describes the overall network characteristics of the FAERS database and provides insight into the use of network applications in drug safety research.
期刊介绍:
Drug Safety is the official journal of the International Society of Pharmacovigilance. The journal includes:
Overviews of contentious or emerging issues.
Comprehensive narrative reviews that provide an authoritative source of information on epidemiology, clinical features, prevention and management of adverse effects of individual drugs and drug classes.
In-depth benefit-risk assessment of adverse effect and efficacy data for a drug in a defined therapeutic area.
Systematic reviews (with or without meta-analyses) that collate empirical evidence to answer a specific research question, using explicit, systematic methods as outlined by the PRISMA statement.
Original research articles reporting the results of well-designed studies in disciplines such as pharmacoepidemiology, pharmacovigilance, pharmacology and toxicology, and pharmacogenomics.
Editorials and commentaries on topical issues.
Additional digital features (including animated abstracts, video abstracts, slide decks, audio slides, instructional videos, infographics, podcasts and animations) can be published with articles; these are designed to increase the visibility, readership and educational value of the journal’s content. In addition, articles published in Drug Safety Drugs may be accompanied by plain language summaries to assist readers who have some knowledge of, but not in-depth expertise in, the area to understand important medical advances.