Crosslinking by ZapD drives the assembly of short FtsZ filaments into toroidal structures in solution.

IF 6.4 1区 生物学 Q1 BIOLOGY
eLife Pub Date : 2025-09-15 DOI:10.7554/eLife.95557
Adrián Merino-Salomón, Jonathan Scheneider, Leon Babl, Jan-Hagen Krohn, Marta Sobrinos-Sanguino, Tillman Schaefer, Juan Ramon Luque-Ortega, Carlos Alfonso, Mercedes Jiménez, Marion Jasnin, Petra Schwille, German Rivas
{"title":"Crosslinking by ZapD drives the assembly of short FtsZ filaments into toroidal structures in solution.","authors":"Adrián Merino-Salomón, Jonathan Scheneider, Leon Babl, Jan-Hagen Krohn, Marta Sobrinos-Sanguino, Tillman Schaefer, Juan Ramon Luque-Ortega, Carlos Alfonso, Mercedes Jiménez, Marion Jasnin, Petra Schwille, German Rivas","doi":"10.7554/eLife.95557","DOIUrl":null,"url":null,"abstract":"<p><p>Cell division in <i>Escherichia coli</i> relies on the Z ring, a cytoskeletal structure that acts as a scaffold for the assembly of the divisome. To date, the detailed mechanisms underlying the assembly and stabilization of the Z ring remain elusive. This study highlights the role of the FtsZ-associated protein (Zap) ZapD in the assembly and stabilization of Z-ring-like structures via filament crosslinking. Using cryo-electron tomography and biochemical analysis, we show that, at equimolar concentrations of ZapD and FtsZ, ZapD induces the formation of toroidal structures composed of short, curved FtsZ filaments that are crosslinked vertically, but also laterally and diagonally. At higher concentrations of ZapD, regularly spaced ZapD dimers crosslink FtsZ filaments from above, resulting in the formation of straight bundles. Despite the simplicity of this reconstituted system, these findings provide valuable insights into the structural organization and stabilization of the Z ring by Zap proteins in bacterial cells, revealing the key role of optimal crosslinking density and geometry in enabling filament curvature and ring formation.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"13 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12435895/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.95557","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cell division in Escherichia coli relies on the Z ring, a cytoskeletal structure that acts as a scaffold for the assembly of the divisome. To date, the detailed mechanisms underlying the assembly and stabilization of the Z ring remain elusive. This study highlights the role of the FtsZ-associated protein (Zap) ZapD in the assembly and stabilization of Z-ring-like structures via filament crosslinking. Using cryo-electron tomography and biochemical analysis, we show that, at equimolar concentrations of ZapD and FtsZ, ZapD induces the formation of toroidal structures composed of short, curved FtsZ filaments that are crosslinked vertically, but also laterally and diagonally. At higher concentrations of ZapD, regularly spaced ZapD dimers crosslink FtsZ filaments from above, resulting in the formation of straight bundles. Despite the simplicity of this reconstituted system, these findings provide valuable insights into the structural organization and stabilization of the Z ring by Zap proteins in bacterial cells, revealing the key role of optimal crosslinking density and geometry in enabling filament curvature and ring formation.

通过ZapD交联驱动短FtsZ细丝在溶液中组装成环形结构。
大肠杆菌的细胞分裂依赖于Z环,这是一种细胞骨架结构,作为分裂体组装的支架。迄今为止,Z环的组装和稳定的详细机制仍然难以捉摸。这项研究强调了ftsz相关蛋白(Zap) ZapD在通过丝交联组装和稳定z环样结构中的作用。通过低温电子断层扫描和生化分析,我们发现,在等摩尔浓度的ZapD和FtsZ下,ZapD诱导形成由短的、弯曲的FtsZ细丝组成的环形结构,这些细丝垂直交联,也横向和对角线交联。在较高浓度的ZapD下,有规则间隔的ZapD二聚体从上方交联FtsZ细丝,形成直束。尽管这种重组系统很简单,但这些发现为Zap蛋白在细菌细胞中的Z环的结构组织和稳定性提供了有价值的见解,揭示了最佳交联密度和几何形状在实现丝曲率和环形成中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
eLife
eLife BIOLOGY-
CiteScore
12.90
自引率
3.90%
发文量
3122
审稿时长
17 weeks
期刊介绍: eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as: Research Articles: Detailed reports of original research findings. Short Reports: Concise presentations of significant findings that do not warrant a full-length research article. Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research. Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field. Scientific Correspondence: Short communications that comment on or provide additional information related to published articles. Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信