Phase transformation in Ce-Doped zirconia single and oligo-crystals: In-situ micro-compression with electron back-scattered diffraction analysis

IF 9.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
M.D. Magalhães , S. Kalácska , S. Comby-Dassonneville , T. Douillard , G. Huynh , H. Reveron , S. Meille , T.W. Cornelius , G. Kermouche , O. Thomas , J. Chevalier
{"title":"Phase transformation in Ce-Doped zirconia single and oligo-crystals: In-situ micro-compression with electron back-scattered diffraction analysis","authors":"M.D. Magalhães ,&nbsp;S. Kalácska ,&nbsp;S. Comby-Dassonneville ,&nbsp;T. Douillard ,&nbsp;G. Huynh ,&nbsp;H. Reveron ,&nbsp;S. Meille ,&nbsp;T.W. Cornelius ,&nbsp;G. Kermouche ,&nbsp;O. Thomas ,&nbsp;J. Chevalier","doi":"10.1016/j.actamat.2025.121553","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines for the first time phase transformation of single and oligo-crystalline tetragonal zirconia micropillars under <em>in-situ</em> compression with Electron Back-Scattered Diffraction (EBSD). The tetragonal-to-monoclinic (<em>t-m</em>) phase transformation in ceria-doped zirconia pillars is initiated when a critical stress threshold is reached and propagates along individual grains with increasing stress. Grain boundaries, triple junctions, and small processing-related pores, which lead to localized stress concentrations, facilitate the transformation by lowering the effective applied critical stress. Our findings also align well with the predictions of the crystallographic theory and extend observations from prior studies on single-crystal systems, thereby providing a clearer understanding of the sequences of stress-induced phase transformation in oligo-crystalline tetragonal zirconia.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"301 ","pages":"Article 121553"},"PeriodicalIF":9.3000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425008390","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines for the first time phase transformation of single and oligo-crystalline tetragonal zirconia micropillars under in-situ compression with Electron Back-Scattered Diffraction (EBSD). The tetragonal-to-monoclinic (t-m) phase transformation in ceria-doped zirconia pillars is initiated when a critical stress threshold is reached and propagates along individual grains with increasing stress. Grain boundaries, triple junctions, and small processing-related pores, which lead to localized stress concentrations, facilitate the transformation by lowering the effective applied critical stress. Our findings also align well with the predictions of the crystallographic theory and extend observations from prior studies on single-crystal systems, thereby providing a clearer understanding of the sequences of stress-induced phase transformation in oligo-crystalline tetragonal zirconia.

Abstract Image

Abstract Image

ce掺杂氧化锆单晶和寡晶的相变:原位微压缩与电子背散射衍射分析
利用电子背散射衍射(EBSD)研究了原位压缩条件下单晶和寡晶四方氧化锆微柱的首次相变。当达到临界应力阈值时,氧化锆柱的四方向单斜(t-m)相变开始,并随着应力的增加沿单个晶粒扩展。晶界、三重结和与加工相关的小孔隙导致局部应力集中,通过降低有效施加临界应力促进转变。我们的发现也与晶体学理论的预测很好地吻合,并扩展了先前单晶系统研究的观察结果,从而更清楚地了解了低晶四方氧化锆的应力诱导相变序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信