AI designs de novo antibiotics

IF 41.7 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Iris Marchal
{"title":"AI designs de novo antibiotics","authors":"Iris Marchal","doi":"10.1038/s41587-025-02822-6","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":19084,"journal":{"name":"Nature biotechnology","volume":"43 9","pages":"1425-1425"},"PeriodicalIF":41.7000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41587-025-02822-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
人工智能设计了新的抗生素
深度学习已经成为筛选具有抗生素活性化合物的大型文库的有力工具,但识别结构新颖的候选化合物仍然具有挑战性。Krishnan等人在《细胞》杂志上写道,他们使用生成式人工智能框架来扩展这个已知的化学空间,以片段为起点或从头生成它们来设计抗生素化合物。基于片段的方法使用图神经网络模型筛选超过4500万个化学片段,以对抗淋病奈瑟菌和金黄色葡萄球菌。然后将有希望的片段扩展成分子,将它们作为两种生成算法的输入:一种是基于化学合理突变的遗传算法,另一种是变分自编码器,产生了700多万个候选片段。对于淋病奈瑟菌,作者成功地合成了27种选定化合物中的2种。一种名为NG1的化合物在体外对淋病奈瑟菌显示出有效的抗生素活性,并在小鼠感染模型中减少了阴道细菌负荷。NG1可能通过破坏低脂寡糖输出系统蛋白LptA的稳定而破坏细菌膜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature biotechnology
Nature biotechnology 工程技术-生物工程与应用微生物
CiteScore
63.00
自引率
1.70%
发文量
382
审稿时长
3 months
期刊介绍: Nature Biotechnology is a monthly journal that focuses on the science and business of biotechnology. It covers a wide range of topics including technology/methodology advancements in the biological, biomedical, agricultural, and environmental sciences. The journal also explores the commercial, political, ethical, legal, and societal aspects of this research. The journal serves researchers by providing peer-reviewed research papers in the field of biotechnology. It also serves the business community by delivering news about research developments. This approach ensures that both the scientific and business communities are well-informed and able to stay up-to-date on the latest advancements and opportunities in the field. Some key areas of interest in which the journal actively seeks research papers include molecular engineering of nucleic acids and proteins, molecular therapy, large-scale biology, computational biology, regenerative medicine, imaging technology, analytical biotechnology, applied immunology, food and agricultural biotechnology, and environmental biotechnology. In summary, Nature Biotechnology is a comprehensive journal that covers both the scientific and business aspects of biotechnology. It strives to provide researchers with valuable research papers and news while also delivering important scientific advancements to the business community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信