Johannes Figueiredo, Marten Richter, Mirco Troue, Jonas Kiemle, Hendrik Lambers, Torsten Stiehm, Takashi Taniguchi, Kenji Watanabe, Ursula Wurstbauer, Andreas Knorr, Alexander W. Holleitner
{"title":"Laterally extended states of interlayer excitons in reconstructed MoSe2/WSe2 heterostructures","authors":"Johannes Figueiredo, Marten Richter, Mirco Troue, Jonas Kiemle, Hendrik Lambers, Torsten Stiehm, Takashi Taniguchi, Kenji Watanabe, Ursula Wurstbauer, Andreas Knorr, Alexander W. Holleitner","doi":"10.1038/s41535-025-00820-0","DOIUrl":null,"url":null,"abstract":"<p>Heterostructures made from 2D transition-metal dichalcogenides are known as ideal platforms to explore excitonic phenomena ranging from correlated moiré excitons to degenerate interlayer exciton ensembles. So far, it is assumed that the atomic reconstruction appearing in some of the heterostructures gives rise to a dominating localization of the exciton states. We demonstrate that the center-of-mass wavefunction of the excitonic states in reconstructed MoSe<sub>2</sub>/WSe<sub>2</sub> heterostructures can extend well beyond the moiré periodicity of the investigated heterostructures. The results are based on real-space calculations yielding a lateral potential map for interlayer excitons within the strain-relaxed heterostructures with weak random disorder, as expected for realistic samples, and the corresponding real-space center-of-mass excitonic wavefunctions. We combine the theoretical results with cryogenic photoluminescence experiments, which support the computed level structure and relaxation characteristics of the interlayer excitons.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":"28 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-025-00820-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Heterostructures made from 2D transition-metal dichalcogenides are known as ideal platforms to explore excitonic phenomena ranging from correlated moiré excitons to degenerate interlayer exciton ensembles. So far, it is assumed that the atomic reconstruction appearing in some of the heterostructures gives rise to a dominating localization of the exciton states. We demonstrate that the center-of-mass wavefunction of the excitonic states in reconstructed MoSe2/WSe2 heterostructures can extend well beyond the moiré periodicity of the investigated heterostructures. The results are based on real-space calculations yielding a lateral potential map for interlayer excitons within the strain-relaxed heterostructures with weak random disorder, as expected for realistic samples, and the corresponding real-space center-of-mass excitonic wavefunctions. We combine the theoretical results with cryogenic photoluminescence experiments, which support the computed level structure and relaxation characteristics of the interlayer excitons.
期刊介绍:
npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.