Computational Unique Continuation with Finite Dimensional Neumann Trace

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Erik Burman, Lauri Oksanen, Ziyao Zhao
{"title":"Computational Unique Continuation with Finite Dimensional Neumann Trace","authors":"Erik Burman, Lauri Oksanen, Ziyao Zhao","doi":"10.1137/24m164080x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 5, Page 1986-2008, October 2025. <br/> Abstract. We consider finite element approximations of unique continuation problems subject to elliptic equations in the case where the normal derivative of the exact solution is known to reside in some finite dimensional space. To give quantitative error estimates we prove Lipschitz stability of the unique continuation problem in the global [math]-norm. This stability is then leveraged to derive optimal a posteriori and a priori error estimates for a primal-dual stabilized finite element method.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"3 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m164080x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Numerical Analysis, Volume 63, Issue 5, Page 1986-2008, October 2025.
Abstract. We consider finite element approximations of unique continuation problems subject to elliptic equations in the case where the normal derivative of the exact solution is known to reside in some finite dimensional space. To give quantitative error estimates we prove Lipschitz stability of the unique continuation problem in the global [math]-norm. This stability is then leveraged to derive optimal a posteriori and a priori error estimates for a primal-dual stabilized finite element method.
有限维Neumann迹的计算唯一延拓
SIAM数值分析杂志,第63卷,第5期,1986-2008页,2025年10月。摘要。考虑椭圆型方程唯一延拓问题的有限元逼近,其中精确解的法向导数已知存在于有限维空间中。为了给出定量误差估计,我们证明了唯一连续问题在全局范数下的Lipschitz稳定性。然后利用这种稳定性推导出原始-对偶稳定有限元方法的最优后验和先验误差估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信