{"title":"Application of ion imprinted polymers (IIPs) for rare earth elements recovery from secondary aqueous sources—A data-based review","authors":"Pan Ni, John Earwood, Baolin Deng","doi":"10.1080/10643389.2025.2553281","DOIUrl":null,"url":null,"abstract":"Rare earth elements (REE) are of significant importance due to their irreplaceable roles played in various industries and military applications. The current REE supply mainly comes from primary ore-deposits and is under control by very few countries, leading to a significant risk of supply-chain disruption. To minimize such risk, there is an increased interest in extracting REEs from secondary sources, such as Acid Mine Drainage (AMD) and natural Acid Rock Drainage (ARD). However, compared to the primary sources, the dramatically lower concentration of REEs and higher levels of competing species (e.g., H<sup>+</sup>, Fe<sup>3+</sup>, Ca<sup>2+</sup>, Mg<sup>2+</sup>, Al<sup>3+</sup>) makes REE extraction extremely challenging. One approach to overcome this challenge is to use highly selective adsorbents, such as ion imprinted polymers (IIPs) that have been increasingly explored in recent years. Our main objectives of this data-based review are to: (1) clarify the application scenarios of two types of selectivity factors and evaluate the related methods <i>via</i> data analysis and modeling, (2) compare the performance of synthetic <i>versus</i> natural polymer-based IIPs through statistical analysis, and (3) provide perspectives for IIP development and testing to facilitate future advances.","PeriodicalId":10823,"journal":{"name":"Critical Reviews in Environmental Science and Technology","volume":"24 1","pages":"1-19"},"PeriodicalIF":13.2000,"publicationDate":"2025-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Environmental Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10643389.2025.2553281","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Rare earth elements (REE) are of significant importance due to their irreplaceable roles played in various industries and military applications. The current REE supply mainly comes from primary ore-deposits and is under control by very few countries, leading to a significant risk of supply-chain disruption. To minimize such risk, there is an increased interest in extracting REEs from secondary sources, such as Acid Mine Drainage (AMD) and natural Acid Rock Drainage (ARD). However, compared to the primary sources, the dramatically lower concentration of REEs and higher levels of competing species (e.g., H+, Fe3+, Ca2+, Mg2+, Al3+) makes REE extraction extremely challenging. One approach to overcome this challenge is to use highly selective adsorbents, such as ion imprinted polymers (IIPs) that have been increasingly explored in recent years. Our main objectives of this data-based review are to: (1) clarify the application scenarios of two types of selectivity factors and evaluate the related methods via data analysis and modeling, (2) compare the performance of synthetic versus natural polymer-based IIPs through statistical analysis, and (3) provide perspectives for IIP development and testing to facilitate future advances.
期刊介绍:
Two of the most pressing global challenges of our era involve understanding and addressing the multitude of environmental problems we face. In order to tackle them effectively, it is essential to devise logical strategies and methods for their control. Critical Reviews in Environmental Science and Technology serves as a valuable international platform for the comprehensive assessment of current knowledge across a wide range of environmental science topics.
Environmental science is a field that encompasses the intricate and fluid interactions between various scientific disciplines. These include earth and agricultural sciences, chemistry, biology, medicine, and engineering. Furthermore, new disciplines such as environmental toxicology and risk assessment have emerged in response to the increasing complexity of environmental challenges.
The purpose of Critical Reviews in Environmental Science and Technology is to provide a space for critical analysis and evaluation of existing knowledge in environmental science. By doing so, it encourages the advancement of our understanding and the development of effective solutions. This journal plays a crucial role in fostering international cooperation and collaboration in addressing the pressing environmental issues of our time.