Syu-Ning Johnn, Hasan Nikkhah, Meng-Lin Tsai, Styliani Avraamidou, Burcu Beykal, Vassilis M Charitopoulos
{"title":"Data-Driven Chance-Constrained Mixed Integer Nonlinear Bi-level Optimisation Via Copulas: Application To Integrated Planning And Scheduling Problems.","authors":"Syu-Ning Johnn, Hasan Nikkhah, Meng-Lin Tsai, Styliani Avraamidou, Burcu Beykal, Vassilis M Charitopoulos","doi":"10.69997/sct.169891","DOIUrl":null,"url":null,"abstract":"<p><p>Planning and scheduling are integral components of process supply chains. The presence of data correlation, particularly multivariate demand data dependency, can pose significant challenges to the decision-making process. This necessitates the consideration of dependency structures inherent in the underlying data to generate good-quality, feasible solutions to optimisation problems such as planning and scheduling. This work proposes a chance-constrained optimisation framework integrated with copulas, a non-parametric data estimation technique to forecast uncertain demand levels in accordance with specified risk thresholds in the context of a planning and scheduling problem. We focus on the integrated planning and scheduling problem following a bi-level optimisation formulation. The estimated demand forecasts are subsequently utilised within the Data-driven Optimisation of bi-level Mixed-Integer NOnlinear problems (DOMINO) framework to solve the integrated optimisation problem, and derive decisions with guaranteed demand satisfaction rates. Computational experiments demonstrate that our proposed copula-based chance-constrained optimisation framework can incorporate demand correlation and achieve higher joint demand satisfaction rate, lower total costs with higher efficiency.</p>","PeriodicalId":520222,"journal":{"name":"Systems & control transactions","volume":"4 ","pages":"117-122"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12425488/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & control transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.69997/sct.169891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Planning and scheduling are integral components of process supply chains. The presence of data correlation, particularly multivariate demand data dependency, can pose significant challenges to the decision-making process. This necessitates the consideration of dependency structures inherent in the underlying data to generate good-quality, feasible solutions to optimisation problems such as planning and scheduling. This work proposes a chance-constrained optimisation framework integrated with copulas, a non-parametric data estimation technique to forecast uncertain demand levels in accordance with specified risk thresholds in the context of a planning and scheduling problem. We focus on the integrated planning and scheduling problem following a bi-level optimisation formulation. The estimated demand forecasts are subsequently utilised within the Data-driven Optimisation of bi-level Mixed-Integer NOnlinear problems (DOMINO) framework to solve the integrated optimisation problem, and derive decisions with guaranteed demand satisfaction rates. Computational experiments demonstrate that our proposed copula-based chance-constrained optimisation framework can incorporate demand correlation and achieve higher joint demand satisfaction rate, lower total costs with higher efficiency.