Selection of Fitness Criteria for Learning Interpretable PDE Solutions via Symbolic Regression.

Systems & control transactions Pub Date : 2025-07-01 Epub Date: 2025-06-27 DOI:10.69997/sct.199083
Benjamin G Cohen, Burcu Beykal, George M Bollas
{"title":"Selection of Fitness Criteria for Learning Interpretable PDE Solutions via Symbolic Regression.","authors":"Benjamin G Cohen, Burcu Beykal, George M Bollas","doi":"10.69997/sct.199083","DOIUrl":null,"url":null,"abstract":"<p><p>Physics-Informed Symbolic Regression (PISR) offers a pathway to discover human-interpretable solutions to partial differential equations (PDEs). This work investigates three fitness metrics within a PISR framework: PDE fitness, Bayesian Information Criterion (BIC), and a fitness metric proportional to the probability of a model given the data. Through experiments with Laplace's equation, Burgers' equation, and a nonlinear wave equation, we demonstrate that incorporating information theoretic criteria like BIC can yield higher fidelity models while maintaining interpretability. Our results show that BIC-based PISR achieved the best performance, identifying an exact solution to Laplace's equation and finding solutions with <math> <mrow><msup><mi>R</mi> <mn>2</mn></msup> </mrow> </math> -values of 0.998 for Burgers' equation and 0.957 for the nonlinear wave equation. The inclusion of the Bayes D-optimality criterion in estimating model probability strongly constrained solution complexity, limiting models to 3-4 parameters and reducing accuracy. These findings suggest that a two-stage approach-using simpler complexity metrics during initial solution discovery followed by a post-hoc identifiability analysis may be optimal for discovering interpretable and mathematically identifiable PDE solutions.</p>","PeriodicalId":520222,"journal":{"name":"Systems & control transactions","volume":"4 ","pages":"1837-1842"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12425483/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & control transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.69997/sct.199083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Physics-Informed Symbolic Regression (PISR) offers a pathway to discover human-interpretable solutions to partial differential equations (PDEs). This work investigates three fitness metrics within a PISR framework: PDE fitness, Bayesian Information Criterion (BIC), and a fitness metric proportional to the probability of a model given the data. Through experiments with Laplace's equation, Burgers' equation, and a nonlinear wave equation, we demonstrate that incorporating information theoretic criteria like BIC can yield higher fidelity models while maintaining interpretability. Our results show that BIC-based PISR achieved the best performance, identifying an exact solution to Laplace's equation and finding solutions with R 2 -values of 0.998 for Burgers' equation and 0.957 for the nonlinear wave equation. The inclusion of the Bayes D-optimality criterion in estimating model probability strongly constrained solution complexity, limiting models to 3-4 parameters and reducing accuracy. These findings suggest that a two-stage approach-using simpler complexity metrics during initial solution discovery followed by a post-hoc identifiability analysis may be optimal for discovering interpretable and mathematically identifiable PDE solutions.

Abstract Image

Abstract Image

Abstract Image

符号回归学习可解释PDE解的适应度标准选择。
物理信息符号回归(PISR)为发现偏微分方程(PDEs)的人类可解释解提供了一条途径。这项工作研究了PISR框架中的三个适应度指标:PDE适应度,贝叶斯信息标准(BIC),以及与给定数据的模型概率成比例的适应度指标。通过拉普拉斯方程、Burgers方程和非线性波动方程的实验,我们证明了结合BIC等信息理论标准可以在保持可解释性的同时产生更高保真度的模型。研究结果表明,基于bic的PISR算法获得了最佳的性能,能够识别出拉普拉斯方程的精确解,并能求出Burgers方程和非线性波动方程的r2值分别为0.998和0.957的解。在估计模型概率时加入贝叶斯d -最优准则强烈约束了求解复杂度,将模型限制在3-4个参数范围内,降低了精度。这些发现表明,两阶段方法——在初始解决方案发现期间使用更简单的复杂性度量,然后进行事后可识别性分析——可能是发现可解释和数学上可识别的PDE解决方案的最佳方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信