Digital Twin for the Win: Personalized Cardiac Electrophysiology.

Pei-Chi Yang, Mao-Tsuen Jeng, Deborah K Lieu, Regan L Smithers, Gonzalo Hernandez-Hernandez, L Fernando Santana, Colleen E Clancy
{"title":"Digital Twin for the Win: Personalized Cardiac Electrophysiology.","authors":"Pei-Chi Yang, Mao-Tsuen Jeng, Deborah K Lieu, Regan L Smithers, Gonzalo Hernandez-Hernandez, L Fernando Santana, Colleen E Clancy","doi":"10.1101/2025.09.03.674034","DOIUrl":null,"url":null,"abstract":"<p><p>Individual variability drives differences in cardiovascular disease manifestation, therapeutic response, and rare phenotypes. Traditional preclinical models minimize variability, limiting their ability to capture population heterogeneity and contributing to translational gaps and adverse drug reactions. Here, we present a computational, experimental, and machine learning framework for generating digital twins of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) that reproduce cell-specific electrophysiology from a single optimized voltage-clamp protocol. A synthetic population of iPSC-CMs was generated by varying 52 parameters across six ionic currents and used to train a neural network to infer parameters from current responses. Applied to experimental data, this approach produced digital twins that captured action potential diversity across temperatures and morphologies. Importantly, baseline variability in ionic current dynamics not only explained heterogeneity in spontaneous action potential waveforms but also predicted differential drug sensitivity, supporting digital twin application in cardiac safety pharmacology and precision medicine.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12424819/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.09.03.674034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Individual variability drives differences in cardiovascular disease manifestation, therapeutic response, and rare phenotypes. Traditional preclinical models minimize variability, limiting their ability to capture population heterogeneity and contributing to translational gaps and adverse drug reactions. Here, we present a computational, experimental, and machine learning framework for generating digital twins of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) that reproduce cell-specific electrophysiology from a single optimized voltage-clamp protocol. A synthetic population of iPSC-CMs was generated by varying 52 parameters across six ionic currents and used to train a neural network to infer parameters from current responses. Applied to experimental data, this approach produced digital twins that captured action potential diversity across temperatures and morphologies. Importantly, baseline variability in ionic current dynamics not only explained heterogeneity in spontaneous action potential waveforms but also predicted differential drug sensitivity, supporting digital twin application in cardiac safety pharmacology and precision medicine.

制胜的数字孪生:个性化心脏电生理学。
背景:在遗传性和获得性心脏病中,个体差异影响疾病易感性、治疗反应和罕见表型的出现。传统的临床前模型有意减少可变性以分离生物效应,但因此未能捕捉到人类群体中存在的异质性。这一限制导致了翻译空白、不完整的机制理解和药物不良反应。数字双胞胎提供了一种新颖的解决方案,通过将个性化数据与基于模拟的推断相结合,以细胞特异性和最终患者特异性的方式预测生理和治疗结果。方法:我们开发了一个集成的计算、实验和机器学习框架来生成人类诱导多能干细胞衍生的心肌细胞(iPSC-CMs)的数字双胞胎。通过引入控制六种主要离子电流的52个生物物理参数的生理上合理的变化,创建了超过100万个计算iPSC-CMs的合成种群。使用两个合成数据集来训练和测试一个完全连接的深度神经网络,以直接从优化的全细胞电压钳记录推断完整的参数集。结果:将该模型应用于实验iPSC-CMs,可以快速提取离子电导和动力学参数,生成复制动作电位波形和起搏频率的数字双胞胎。这些模型以高保真度捕获了不同形态和记录条件下的去极化、平台和复极化的精细电生理特征。该框架对温度扰动和广泛的形态变异都具有鲁棒性,因为我们表明,合成训练数据可以很容易地重新调整到任何记录温度,并包括广泛的AP表型。结论:这项工作引入了一种可扩展的技术,用于从单个记录中生成完全参数化的、细胞特异性的人类iPSC-CMs数字双胞胎。通过统一计算建模、合成数据生成和深度学习,该方法将一个缓慢的、多步骤的过程转变为一个快速、通用的平台,用于个性化诊断、靶向治疗和预测安全药理学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信