Lipid nanoparticles hijack neutrophils for enhanced anti-inflammatory and stroke therapy.

IF 9.6
Qian Cheng, Yufei Zhang, Guomin Su, Yuhao Xue, Xinyu Zou, Madiha Zahra Syeda, Ruwei Jie, Jinlong Wan, Yang Li, Qiuchen Bi, Heping Zhu, He Bai, Sanjeev Nirala, Qing Lan, Longguang Tang, Qingchun Mu
{"title":"Lipid nanoparticles hijack neutrophils for enhanced anti-inflammatory and stroke therapy.","authors":"Qian Cheng, Yufei Zhang, Guomin Su, Yuhao Xue, Xinyu Zou, Madiha Zahra Syeda, Ruwei Jie, Jinlong Wan, Yang Li, Qiuchen Bi, Heping Zhu, He Bai, Sanjeev Nirala, Qing Lan, Longguang Tang, Qingchun Mu","doi":"10.1016/j.actbio.2025.09.015","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemic stroke remains a critical global health challenge with limited therapeutic options targeting secondary neuroinflammation. Emerging evidence implicates neutrophil extracellular traps (NETs) as key mediators of blood-brain barrier (BBB) disruption and neuronal damage during ischemia-reperfusion injury. Capitalizing on this pathophysiology, we engineered a neutrophil-homing lipid nanoparticle (LNP) platform encapsulating brensocatib (AZD7986), an FDA-designated breakthrough therapy that inhibits dipeptidyl peptidase 1 (DPP1) to block activation of neutrophil serine proteases. The LNPs exploit intrinsic neutrophil chemotaxis to achieve BBB penetration and lesion-specific accumulation, enabling localized release of AZD7986 in ischemic brain tissue. In a murine middle cerebral artery occlusion (MCAO) model, targeted LNP delivery (T-AZD) significantly prolonged survival, reduced cerebral infarct volume by 45 %, and suppressed NET formation through inhibition of elastase and cathepsin G activity (p < 0.01 vs. non-targeted controls). Mechanistically, T-AZD attenuated reactive astrogliosis and decreased pro-inflammatory cytokine levels (IL-6, TNF-α) by >50 %, demonstrating dual anti-inflammatory and neuroprotective effects. This neutrophil-directed nanoplatform addresses critical limitations of systemic DPP1 inhibition through spatiotemporal control of drug release, while exhibiting enhanced biocompatibility in hematological and histological safety assessments. By integrating targeted neutrophil trafficking with precision protease inhibition, our strategy establishes a translatable paradigm for modulating neuroimmune responses in cerebrovascular diseases. STATEMENT OF SIGNIFICANCE: Ischemic stroke lacks effective therapies targeting neuroinflammation. We developed neutrophil-homing lipid nanoparticles (LNPs) delivering brensocatib (AZD7986), a DPP1 inhibitor, to suppress neutrophil extracellular traps (NETs) and neuroinflammation. In a murine stroke model, targeted LNPs reduced infarct volume by 45 %, inhibited NET formation, and lowered pro-inflammatory cytokines (>50 %), demonstrating neuroprotection and anti-inflammatory effects. This approach enables precise drug delivery to ischemic brain tissue, overcoming limitations of systemic therapy while maintaining safety. By combining neutrophil-directed targeting with protease inhibition, our strategy offers a translatable platform for modulating neuroimmune responses in cerebrovascular diseases.</p>","PeriodicalId":93848,"journal":{"name":"Acta biomaterialia","volume":" ","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta biomaterialia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.actbio.2025.09.015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ischemic stroke remains a critical global health challenge with limited therapeutic options targeting secondary neuroinflammation. Emerging evidence implicates neutrophil extracellular traps (NETs) as key mediators of blood-brain barrier (BBB) disruption and neuronal damage during ischemia-reperfusion injury. Capitalizing on this pathophysiology, we engineered a neutrophil-homing lipid nanoparticle (LNP) platform encapsulating brensocatib (AZD7986), an FDA-designated breakthrough therapy that inhibits dipeptidyl peptidase 1 (DPP1) to block activation of neutrophil serine proteases. The LNPs exploit intrinsic neutrophil chemotaxis to achieve BBB penetration and lesion-specific accumulation, enabling localized release of AZD7986 in ischemic brain tissue. In a murine middle cerebral artery occlusion (MCAO) model, targeted LNP delivery (T-AZD) significantly prolonged survival, reduced cerebral infarct volume by 45 %, and suppressed NET formation through inhibition of elastase and cathepsin G activity (p < 0.01 vs. non-targeted controls). Mechanistically, T-AZD attenuated reactive astrogliosis and decreased pro-inflammatory cytokine levels (IL-6, TNF-α) by >50 %, demonstrating dual anti-inflammatory and neuroprotective effects. This neutrophil-directed nanoplatform addresses critical limitations of systemic DPP1 inhibition through spatiotemporal control of drug release, while exhibiting enhanced biocompatibility in hematological and histological safety assessments. By integrating targeted neutrophil trafficking with precision protease inhibition, our strategy establishes a translatable paradigm for modulating neuroimmune responses in cerebrovascular diseases. STATEMENT OF SIGNIFICANCE: Ischemic stroke lacks effective therapies targeting neuroinflammation. We developed neutrophil-homing lipid nanoparticles (LNPs) delivering brensocatib (AZD7986), a DPP1 inhibitor, to suppress neutrophil extracellular traps (NETs) and neuroinflammation. In a murine stroke model, targeted LNPs reduced infarct volume by 45 %, inhibited NET formation, and lowered pro-inflammatory cytokines (>50 %), demonstrating neuroprotection and anti-inflammatory effects. This approach enables precise drug delivery to ischemic brain tissue, overcoming limitations of systemic therapy while maintaining safety. By combining neutrophil-directed targeting with protease inhibition, our strategy offers a translatable platform for modulating neuroimmune responses in cerebrovascular diseases.

脂质纳米颗粒劫持中性粒细胞增强抗炎和中风治疗。
缺血性卒中仍然是一个重要的全球健康挑战,针对继发性神经炎症的治疗选择有限。新出现的证据表明,中性粒细胞胞外陷阱(NETs)是缺血再灌注损伤中血脑屏障(BBB)破坏和神经元损伤的关键介质。利用这一病理生理学原理,我们设计了一个中性粒细胞归一的脂质纳米颗粒(LNP)平台,包封brensocatib (AZD7986),这是一种fda指定的突破性疗法,可抑制二肽基肽酶1 (DPP1),阻断中性粒细胞丝氨酸蛋白酶的激活。LNPs利用固有的中性粒细胞趋化性来实现血脑屏障渗透和病变特异性积累,使AZD7986在缺血脑组织中局部释放。在小鼠大脑中动脉阻塞(MCAO)模型中,靶向LNP递送(T-AZD)可显著延长生存期,使脑梗死体积减少45%,并通过抑制弹性蛋白酶和组织蛋白酶G活性(p50%)抑制NET形成,显示出抗炎和神经保护的双重作用。这种中性粒细胞导向的纳米平台通过控制药物释放的时空,解决了系统性DPP1抑制的关键限制,同时在血液学和组织学安全性评估中表现出增强的生物相容性。通过整合靶向中性粒细胞运输和精确蛋白酶抑制,我们的策略为调节脑血管疾病的神经免疫反应建立了可翻译的范例。意义声明:缺血性卒中缺乏针对神经炎症的有效治疗方法。我们开发了中性粒细胞归巢脂质纳米颗粒(LNPs),传递brensocatib (AZD7986),一种DPP1抑制剂,以抑制中性粒细胞胞外陷阱(NETs)和神经炎症。在小鼠中风模型中,靶向LNPs使梗死面积减少45%,抑制NET形成,降低促炎细胞因子(>50%),显示出神经保护和抗炎作用。这种方法能够精确地将药物输送到缺血脑组织,克服了全身治疗的局限性,同时保持了安全性。通过结合中性粒细胞定向靶向和蛋白酶抑制,我们的策略为调节脑血管疾病的神经免疫反应提供了一个可翻译的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信