T-cell receptor specificity landscape revealed through de novo peptide design.

ArXiv Pub Date : 2025-09-04
Gian Marco Visani, Michael N Pun, Anastasia A Minervina, Philip Bradley, Paul Thomas, Armita Nourmohammad
{"title":"T-cell receptor specificity landscape revealed through de novo peptide design.","authors":"Gian Marco Visani, Michael N Pun, Anastasia A Minervina, Philip Bradley, Paul Thomas, Armita Nourmohammad","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>T-cells play a key role in adaptive immunity by mounting specific responses against diverse pathogens. An effective binding between T-cell receptors (TCRs) and pathogen-derived peptides presented on Major Histocompatibility Complexes (MHCs) mediate an immune response. However, predicting these interactions remains challenging due to limited functional data on T-cell reactivities. Here, we introduce a computational approach to predict TCR interactions with peptides presented on MHC class I alleles, and to design novel immunogenic peptides for specified TCR-MHC complexes. Our method leverages HERMES, a structure-based, physics-guided machine learning model trained on the protein universe to predict amino acid preferences based on local structural environments. Despite no direct training on TCR-pMHC data, the implicit physical reasoning in HERMES enables us to make accurate predictions of both TCR-pMHC binding affinities and T-cell activities across diverse viral epitopes and cancer neoantigens, achieving up to 0.72 correlation with experimental data. Leveraging our TCR recognition model, we develop a computational protocol for de novo design of immunogenic peptides. Through experimental validation in three TCR-MHC systems targeting viral and cancer peptides, we demonstrate that our designs-with up to five substitutions from the native sequence-activate T-cells at success rates of up to 50%. Lastly, we use our generative framework to quantify the diversity of the peptide recognition landscape for various TCR-MHC complexes, offering key insights into T-cell specificity in both humans and mice. Our approach provides a platform for immunogenic peptide and neoantigen design, as well as for evaluating TCR specificity, offering a computational framework to inform design of engineered T-cell therapies and vaccines.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12425026/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

T-cells play a key role in adaptive immunity by mounting specific responses against diverse pathogens. An effective binding between T-cell receptors (TCRs) and pathogen-derived peptides presented on Major Histocompatibility Complexes (MHCs) mediate an immune response. However, predicting these interactions remains challenging due to limited functional data on T-cell reactivities. Here, we introduce a computational approach to predict TCR interactions with peptides presented on MHC class I alleles, and to design novel immunogenic peptides for specified TCR-MHC complexes. Our method leverages HERMES, a structure-based, physics-guided machine learning model trained on the protein universe to predict amino acid preferences based on local structural environments. Despite no direct training on TCR-pMHC data, the implicit physical reasoning in HERMES enables us to make accurate predictions of both TCR-pMHC binding affinities and T-cell activities across diverse viral epitopes and cancer neoantigens, achieving up to 0.72 correlation with experimental data. Leveraging our TCR recognition model, we develop a computational protocol for de novo design of immunogenic peptides. Through experimental validation in three TCR-MHC systems targeting viral and cancer peptides, we demonstrate that our designs-with up to five substitutions from the native sequence-activate T-cells at success rates of up to 50%. Lastly, we use our generative framework to quantify the diversity of the peptide recognition landscape for various TCR-MHC complexes, offering key insights into T-cell specificity in both humans and mice. Our approach provides a platform for immunogenic peptide and neoantigen design, as well as for evaluating TCR specificity, offering a computational framework to inform design of engineered T-cell therapies and vaccines.

通过从头肽设计揭示的t细胞受体特异性景观。
t细胞通过建立针对不同病原体的特异性反应,在适应性免疫中发挥关键作用。t细胞受体(tcr)和主要组织相容性复合体(MHCs)上的病原体衍生肽之间的有效结合介导了免疫反应。然而,由于t细胞反应的功能数据有限,预测这些相互作用仍然具有挑战性。在这里,我们引入了一种计算方法来预测TCR与MHC I类等位基因上的肽的相互作用,并为特定的TCR-MHC复合物设计新的免疫原性肽。我们的方法利用HERMES,这是一种基于结构的,物理指导的机器学习模型,在蛋白质宇宙中训练,根据局部结构环境预测氨基酸偏好。尽管没有对TCR-pMHC数据进行直接训练,HERMES的隐式物理推理使我们能够准确预测TCR-pMHC结合亲和力和t细胞活性在不同病毒表位和癌症新抗原上的作用,与实验数据的相关性高达0.72。利用我们的TCR识别模型,我们开发了免疫原性肽从头设计的计算协议。通过在三种针对病毒和癌症肽的TCR-MHC系统中进行实验验证,我们证明了我们的设计-从天然序列中替换多达五次-激活t细胞的成功率高达50%。最后,我们使用我们的生成框架来量化各种TCR-MHC复合物的肽识别景观的多样性,为人类和小鼠的t细胞特异性提供关键见解。我们的方法为免疫原性肽和新抗原设计以及TCR特异性评估提供了一个平台,为工程化t细胞疗法和疫苗的设计提供了一个计算框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信