Learning residue level protein dynamics with multiscale Gaussians.

ArXiv Pub Date : 2025-09-01
Mihir Bafna, Bowen Jing, Bonnie Berger
{"title":"Learning residue level protein dynamics with multiscale Gaussians.","authors":"Mihir Bafna, Bowen Jing, Bonnie Berger","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Many methods have been developed to predict static protein structures, however understanding the <i>dynamics</i> of protein structure is essential for elucidating biological function. While molecular dynamics (MD) simulations remain the <i>in silico</i> gold standard, its high computational cost limits scalability. We present DynaProt, a lightweight, SE(3)-invariant framework that predicts rich descriptors of protein dynamics directly from static structures. By casting the problem through the lens of multivariate Gaussians, DynaProt estimates dynamics at two complementary scales: (1) per-residue marginal anisotropy as 3 × 3 covariance matrices capturing local flexibility, and (2) joint scalar covariances encoding pairwise dynamic coupling across residues. From these dynamics outputs, DynaProt achieves high accuracy in predicting residue-level flexibility (RMSF) and, remarkably, enables reasonable reconstruction of the full covariance matrix for fast ensemble generation. Notably, it does so using orders of magnitude fewer parameters than prior methods. Our results highlight the potential of direct protein dynamics prediction as a scalable alternative to existing methods.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12425013/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many methods have been developed to predict static protein structures, however understanding the dynamics of protein structure is essential for elucidating biological function. While molecular dynamics (MD) simulations remain the in silico gold standard, its high computational cost limits scalability. We present DynaProt, a lightweight, SE(3)-invariant framework that predicts rich descriptors of protein dynamics directly from static structures. By casting the problem through the lens of multivariate Gaussians, DynaProt estimates dynamics at two complementary scales: (1) per-residue marginal anisotropy as 3 × 3 covariance matrices capturing local flexibility, and (2) joint scalar covariances encoding pairwise dynamic coupling across residues. From these dynamics outputs, DynaProt achieves high accuracy in predicting residue-level flexibility (RMSF) and, remarkably, enables reasonable reconstruction of the full covariance matrix for fast ensemble generation. Notably, it does so using orders of magnitude fewer parameters than prior methods. Our results highlight the potential of direct protein dynamics prediction as a scalable alternative to existing methods.

用多尺度高斯函数学习残馀水平的蛋白质动力学。
人们已经开发了许多方法来预测蛋白质的静态结构,但是了解蛋白质结构的动态是阐明生物功能的必要条件。虽然分子动力学(MD)模拟仍然是硅中的黄金标准,但其高计算成本限制了可扩展性。我们提出了DynaProt,这是一个轻量级的SE(3)不变框架,可以直接从静态结构预测蛋白质动力学的丰富描述符。通过多变量高斯的透镜,DynaProt在两个互补尺度上估计动态:(1)每个残基的边际各向异性为$3 \乘以3$协方差矩阵,捕获局部灵活性;(2)联合标量协方差编码跨残基的两两动态耦合。从这些动态输出中,DynaProt在预测残差级灵活性(RMSF)方面达到了很高的精度,并且值得注意的是,能够合理地重建完整的协方差矩阵,从而快速生成集成。值得注意的是,它使用的参数比以前的方法少了几个数量级。我们的结果突出了直接蛋白质动力学预测作为现有方法的可扩展替代方案的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信