Randomness with constraints: constructing minimal models for high-dimensional biology.

ArXiv Pub Date : 2025-09-03
Ilya Nemenman, Pankaj Mehta
{"title":"Randomness with constraints: constructing minimal models for high-dimensional biology.","authors":"Ilya Nemenman, Pankaj Mehta","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Biologists and physicists have a rich tradition of modeling living systems with simple models composed of a few interacting components. Despite the remarkable success of this approach, it remains unclear how to use such finely tuned models to study complex biological systems composed of numerous heterogeneous, interacting components. One possible strategy for taming this biological complexity is to embrace the idea that many biological behaviors we observe are \"typical\" and can be modeled using random systems that respect biologically-motivated constraints. Here, we review recent works showing how this approach can be used to make close connection with experiments in biological systems ranging from neuroscience to ecology and evolution and beyond. Collectively, these works suggest that the \"random-with-constraints\" paradigm represents a promising new modeling strategy for capturing experimentally observed dynamical and statistical features in high-dimensional biological data and provides a powerful minimal modeling philosophy for biology.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12425012/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biologists and physicists have a rich tradition of modeling living systems with simple models composed of a few interacting components. Despite the remarkable success of this approach, it remains unclear how to use such finely tuned models to study complex biological systems composed of numerous heterogeneous, interacting components. One possible strategy for taming this biological complexity is to embrace the idea that many biological behaviors we observe are "typical" and can be modeled using random systems that respect biologically-motivated constraints. Here, we review recent works showing how this approach can be used to make close connection with experiments in biological systems ranging from neuroscience to ecology and evolution and beyond. Collectively, these works suggest that the "random-with-constraints" paradigm represents a promising new modeling strategy for capturing experimentally observed dynamical and statistical features in high-dimensional biological data and provides a powerful minimal modeling philosophy for biology.

Abstract Image

Abstract Image

具有约束的随机性:构建高维生物学的最小模型。
生物学家和物理学家有丰富的传统,用一些相互作用的组件组成的简单模型来建模生命系统。尽管这种方法取得了显著的成功,但如何使用这种精细调整的模型来研究由众多异质相互作用的成分组成的复杂生物系统仍不清楚。驯服这种生物复杂性的一个可能策略是接受这样的观点:我们观察到的许多生物行为都是“典型的”,可以使用尊重生物动机约束的随机系统来建模。在这里,我们回顾了最近的工作,展示了如何使用这种方法与从神经科学到生态学和进化等生物系统的实验密切联系。总的来说,这些工作表明,“随机约束”范式代表了一种有前途的新建模策略,用于捕获实验观察到的高维生物数据中的动态和统计特征,并为生物学提供了强大的最小建模哲学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信