Rafał Bernaś, Anna Wąs-Barcz, Tomasz Horbacz, Remigiusz Szymański, Adam M Lejk
{"title":"Shifting genetic structure of Polish sea trout populations: a contemporary perspective.","authors":"Rafał Bernaś, Anna Wąs-Barcz, Tomasz Horbacz, Remigiusz Szymański, Adam M Lejk","doi":"10.1007/s13353-025-01006-x","DOIUrl":null,"url":null,"abstract":"<p><p>The genetic structure and variability of sea trout populations in the southern Baltic Sea were shaped during the last glaciation, in parallel with the evolution of the Baltic Sea. However, human activities-particularly hydrotechnical development and the introduction of non-local genetic lines-have altered and partially reduced the original genetic diversity. In the present study, the authors describe the historical changes that have occurred and present the current level of genetic variability within Polish sea trout populations. A total of 575 sea trout from nine river populations and three hatchery broodstocks were genotyped at 13 microsatellite loci. The global F<sub>ST</sub> obtained via AMOVA was moderate, at 0.041. The highest pairwise F<sub>ST</sub> values were observed between the Rutki and Aquamar broodstocks and all other populations. The lowest and statistically non-significant pairwise differences were detected between the Rega and Ina river populations, as well as between the Słupia and Łupawa. Genetic structure analysis revealed geographic differentiation, identifying either four or seven distinct clusters. Additionally, neighbour-joining clustering showed that the examined populations and stocks were divided into two main subgroups: one consisting of samples related to the Vistula origin, and the other comprising clearly separated Pomeranian populations. This paper discusses the emergence of new genetic variability driven by microevolutionary processes and presents a revised approach for sea trout population management.</p>","PeriodicalId":14891,"journal":{"name":"Journal of Applied Genetics","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13353-025-01006-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The genetic structure and variability of sea trout populations in the southern Baltic Sea were shaped during the last glaciation, in parallel with the evolution of the Baltic Sea. However, human activities-particularly hydrotechnical development and the introduction of non-local genetic lines-have altered and partially reduced the original genetic diversity. In the present study, the authors describe the historical changes that have occurred and present the current level of genetic variability within Polish sea trout populations. A total of 575 sea trout from nine river populations and three hatchery broodstocks were genotyped at 13 microsatellite loci. The global FST obtained via AMOVA was moderate, at 0.041. The highest pairwise FST values were observed between the Rutki and Aquamar broodstocks and all other populations. The lowest and statistically non-significant pairwise differences were detected between the Rega and Ina river populations, as well as between the Słupia and Łupawa. Genetic structure analysis revealed geographic differentiation, identifying either four or seven distinct clusters. Additionally, neighbour-joining clustering showed that the examined populations and stocks were divided into two main subgroups: one consisting of samples related to the Vistula origin, and the other comprising clearly separated Pomeranian populations. This paper discusses the emergence of new genetic variability driven by microevolutionary processes and presents a revised approach for sea trout population management.
期刊介绍:
The Journal of Applied Genetics is an international journal on genetics and genomics. It publishes peer-reviewed original papers, short communications (including case reports) and review articles focused on the research of applicative aspects of plant, human, animal and microbial genetics and genomics.