{"title":"Molecular mechanisms of synovial pathology in osteoarthritis: insights from CXCL10 and MC4R expression.","authors":"Tao Yang, Hong Liu, Jian Chen","doi":"10.1007/s13258-025-01679-y","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA) is a common progressive joint disorder marked by synovial inflammation, cartilage degeneration, the formation of osteophytes, though its underlying molecular mechanisms remain unclear. This study integrated bioinformatics and experimental validation to identify key genes in OA synovium and their association with immune infiltration. Analysis of the GSE82107 dataset (10 OA, 7 controls) revealed 909 differentially expressed genes (525 upregulated, 384 downregulated). WGCNA identified the \"midnightblue\" module, and its intersection with DEGs yielded 122 genes enriched in cytokine-cytokine receptor interaction, JAK-STAT signaling, and autophagy pathways. Protein-protein interaction analysis highlighted FLT3LG, MC4R, CXCL10, CARTPT, and LHX2 as core genes (AUC 0.743-0.871). Immune infiltration analysis showed elevated M0 macrophages in OA, with CXCL10 showing a strong positive correlation with M1 macrophage infiltration (r = 0.74), and MC4R correlating with the presence of follicular helper T cells (r = 0.85). In vitro, OA-derived fibroblast-like synoviocytes exhibited CXCL10 upregulation, MC4R downregulation, and increased IL-6, IL-8, and TNF-α secretion, which were markedly reduced by CXCL10 knockdown or MC4R overexpression. Synovial tissue assays confirmed these expression patterns. CXCL10 and MC4R may represent promising diagnostic markers and therapeutic targets, offering new insights into OA immunopathogenesis and precision intervention.</p>","PeriodicalId":12675,"journal":{"name":"Genes & genomics","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13258-025-01679-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Osteoarthritis (OA) is a common progressive joint disorder marked by synovial inflammation, cartilage degeneration, the formation of osteophytes, though its underlying molecular mechanisms remain unclear. This study integrated bioinformatics and experimental validation to identify key genes in OA synovium and their association with immune infiltration. Analysis of the GSE82107 dataset (10 OA, 7 controls) revealed 909 differentially expressed genes (525 upregulated, 384 downregulated). WGCNA identified the "midnightblue" module, and its intersection with DEGs yielded 122 genes enriched in cytokine-cytokine receptor interaction, JAK-STAT signaling, and autophagy pathways. Protein-protein interaction analysis highlighted FLT3LG, MC4R, CXCL10, CARTPT, and LHX2 as core genes (AUC 0.743-0.871). Immune infiltration analysis showed elevated M0 macrophages in OA, with CXCL10 showing a strong positive correlation with M1 macrophage infiltration (r = 0.74), and MC4R correlating with the presence of follicular helper T cells (r = 0.85). In vitro, OA-derived fibroblast-like synoviocytes exhibited CXCL10 upregulation, MC4R downregulation, and increased IL-6, IL-8, and TNF-α secretion, which were markedly reduced by CXCL10 knockdown or MC4R overexpression. Synovial tissue assays confirmed these expression patterns. CXCL10 and MC4R may represent promising diagnostic markers and therapeutic targets, offering new insights into OA immunopathogenesis and precision intervention.
期刊介绍:
Genes & Genomics is an official journal of the Korean Genetics Society (http://kgenetics.or.kr/). Although it is an official publication of the Genetics Society of Korea, membership of the Society is not required for contributors. It is a peer-reviewed international journal publishing print (ISSN 1976-9571) and online version (E-ISSN 2092-9293). It covers all disciplines of genetics and genomics from prokaryotes to eukaryotes from fundamental heredity to molecular aspects. The articles can be reviews, research articles, and short communications.