Minimal quantum reservoirs with Hamiltonian encoding.

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-09-01 DOI:10.1063/5.0282921
Gerard McCaul, Juan Sebastian Totero Gongora, Wendy Otieno, Sergey Savel'ev, Alexandre Zagoskin, Alexander G Balanov
{"title":"Minimal quantum reservoirs with Hamiltonian encoding.","authors":"Gerard McCaul, Juan Sebastian Totero Gongora, Wendy Otieno, Sergey Savel'ev, Alexandre Zagoskin, Alexander G Balanov","doi":"10.1063/5.0282921","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate a minimal architecture for quantum reservoir computing based on Hamiltonian encoding, in which input data are injected via modulation of system parameters rather than state preparation. This approach circumvents many of the experimental overheads typically associated with quantum machine learning, enabling computation without feedback, memory, or state tomography. We demonstrate that such a minimal quantum reservoir, despite lacking intrinsic memory, can perform nonlinear regression and prediction tasks when augmented with post-processing delay embeddings. Our results provide a conceptually and practically streamlined framework for quantum information processing, offering a clear baseline for future implementations on near-term quantum hardware.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 9","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0282921","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate a minimal architecture for quantum reservoir computing based on Hamiltonian encoding, in which input data are injected via modulation of system parameters rather than state preparation. This approach circumvents many of the experimental overheads typically associated with quantum machine learning, enabling computation without feedback, memory, or state tomography. We demonstrate that such a minimal quantum reservoir, despite lacking intrinsic memory, can perform nonlinear regression and prediction tasks when augmented with post-processing delay embeddings. Our results provide a conceptually and practically streamlined framework for quantum information processing, offering a clear baseline for future implementations on near-term quantum hardware.

最小量子库与哈密顿编码。
我们研究了一种基于哈密顿编码的量子库计算最小架构,其中输入数据通过系统参数调制而不是状态准备注入。这种方法规避了许多通常与量子机器学习相关的实验开销,实现了没有反馈、内存或状态断层扫描的计算。我们证明了这样一个最小量子库,尽管缺乏固有内存,但当增加后处理延迟嵌入时,可以执行非线性回归和预测任务。我们的研究结果为量子信息处理提供了一个概念上和实践上简化的框架,为近期量子硬件的未来实现提供了明确的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信